International Journal of Hematology-Oncology and Stem Cell Research 2017. 11(3):251-262.

Colorectal Cancer Screening: A Comprehensive Review to Recent Non-invasive Methods
Leila Hamzehzadeh, Meysam Yousefi, Seyed Hamidollah Ghaffari

Abstract


Colorectal cancer (CRC) is one of the most common cancers worldwide and considered to be one of the hassle in medical communities. CRC develops from precancerous polyps in the colon or rectum and is preventable and curable by an early diagnosis and with the removal of premalignant polyps. In recent years, scientists have looked for inexpensive and safe ways to detect CRC in its earliest stages. Strong evidence shows that screening for CRC is a crucial way to reduce the incidence and mortality of this devastating disease. The main purpose for screening is to detect cancer or pre-cancer signs in all asymptomatic patients. In this review, we holistically introduce major pathways involved in the initiation and progression of colorectal tumorgenesis, which mainly includes chromosome instability (CIN), microsatellite instability (MSI), the CpG island methylator phenotype (CIMP), and we then will discuss different screening tests and especially the latest non-invasive fecal screening test kits for the detection of CRC.


Keywords


Colorectal cancer (CRC), Chromosome instability (CIN), Microsatellite instability (MSI), The CpG- island methylator phenotype (CIMP),Fecal screening kit

Full Text:

PDF

References


Young, Annie M., Richard Hobbse,et al. ABC of colorectal cancer. John Wiley & Sons,2011.vol 87.

Herbst A, Kolligs FT. Detection of DNA hypermethylation in remote media of patients with colorectal cancer: new biomarkers for colorectal carcinomaTumour Biol. 2012;33(2):297-305.

Key statistics for colorectal cancer [updated 01/20/2016]. Available from: http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics.

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis.Cell. 1990;61(5):759-67.

Bretthauer M. Colorectal cancer screening.J Intern Med. 2011;270(2):87-98.

Lee I-M, Shiroma EJ, LobeloF,et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219-29.

Wolin KY, Tuchman H. Physical activity and gastrointestinal cancer prevention. Recent Results Cancer Res: Springer; 2011. p. 73-100.

Agnoli C, Grioni S, Sieri S, et al. Italian Mediterranean Index and risk of colorectal cancer in the Italian section of the EPIC cohort. Int J Cancer. 2013;132(6):1404-11.

Committee PAGA. Physical activity guidelines advisory committee report, 2008. Washington, DC: US Department of Health and Human Services. 2008;2008:A1-H14.

Slattery M, Edwards S, Curtin K, et al. Physical activity and colorectal cancer. Am J Epidemiol.2003;158(3):214-24.

Rothwell PM, Wilson M, Elwin C-E, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741-50.

Migliore L, Migheli F, Spisni R, et al. Genetics, cytogenetics, and epigenetics of colorectal cancer. Biomed Res Int. 2011;2011.

Morán A, Ortega P, de Juan C, et al. Differential colorectal carcinogenesis: Molecular basis and clinical relevance. World J GastrointestOncol. 2010;2(3):151-8.

Castells A, Castellví–Bel S, Balaguer F. Concepts in familial colorectal cancer: where do we stand and what is the future?.Gastroenterology. 2009 Aug 1;137(2):404-9.15.

Prenen H, Vecchione L, Van Cutsem E. Role of targeted agents in metastatic colorectal cancer. Target Oncol2013; 8: 83-96; PMID: 23645285.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015.CA Cancer J Clin. 2015;65(1):5-29.

Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood.NEngl J Med. 1993;328(19):1365-71.

Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers.Science 2007;318(5853):1108-13.

van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205-14.

Kinzler KW, Nilbert MC, Su L-K, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253(5020):661-5.

Miyaki M, Konishi M, Kikuchi-Yanoshita R, et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 1994;54(11):3011-20.

Thliveris A, Samowitz W, Matsunami N, et al. Demonstration of promoter activity and alternative splicing in the region 5′ to exon 1 of the APC gene. Cancer Res. 1994;54(11):2991-5.

Fu B, Yachida S, Morgan R, et al. Clinicopathologic and genetic characterization of traditional serrated adenomas of the colon. American journal of clinical pathology. 2012;138(3):356-66.

Powell SM, Petersen GM, Krush AJ, et al. Molecular diagnosis of familial adenomatous polyposis. N Engl J Med. 1993;329(27):1982-7.

Sieber O, Lamlum H, Crabtree M, et al. Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or “multiple” colorectal adenomas. ProcNatlAcadSci U S A. 2002;99(5):2954-8.

Kern SE, Fearon ER, Tersmette KW, et al. Allelic loss in colorectal carcinoma. JAMA. 1989;261(21):3099-103.

Srour M, Rivière J-B, Pham JM, Dubé M-P, et al. Mutations in DCC cause congenital mirror movements. Science. 2010;328(5978):592-.

Bevan S, Woodford-Richens K, Rozen P, et al. Screening SMAD1, SMAD2, SMAD3, andSMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999;45(3):406-8.

Leslie A, Carey F, Pratt N, et al. The colorectal adenoma–carcinoma sequence.Br J Surg. 2002;89(7):845-60.

Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2010:gkq929.

Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis.CancerLett. 2001;171(1):1-10.

Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11-22.

Vaughn CP, ZoBell SD, Furtado LV, et al. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 2011 May 1;50(5):307-12.

Chang Y-S, Yeh K-T, Chang T-J, et al. Fast simultaneous detection of K-RAS mutations in colorectal cancer. BMC Cancer. 2009;9(1):179.

Nash GM, Gimbel M, Shia J, et al. KRAS mutation correlates with accelerated metastatic progression in patients with colorectal liver metastases. Ann SurgOncol. 2010;17(2):572-8.

Lane D, Benchimol S. p53: oncogene or anti-oncogene. Genes Dev. 1990; 4(1):1-8.

Fridman JS, Lowe SW. Control of apoptosis by p53.Oncogene. 2003;22(56):9030-40.

Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53.CurrOpinOncol. 2002;14(1):86-91.

Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 2009;458(7242):1127-30.

Vasen HF, Möslein G, Alonso A, et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J Med Genet. 2007;44(6):353-62.

Ward R, Meagher A, Tomlinson I, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;48(6):821-9.

Buecher B, Cacheux W, Rouleau E, et al. Role of microsatellite instability in the management of colorectal cancers. Dig Liver Dis. 2013;45(6):441-9.

Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304-10.

Aaltonen LA, Peltomäki P, Mecklin J-P, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994;54(7):1645-8.

Murphy KM, Zhang S, Geiger T, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J MolDiagn. 2006;8(3):305-11.

Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2(3):227-35.

Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005;129(3):837-45.

Ogino S, Odze RD, Kawasaki T, et al. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J SurgPathol.2006;30(9):1175-83.

Barault L, Charon-Barra C, Jooste V, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68(20):8541-6.

Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J MolDiagn. 2008;10(1):13-27.

Jass J. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology.2007;50(1):113-30.

Hereditary Non-polyposis Colorectal Carcinoma Syndrome (HNPCC). Available from: http://surgpathcriteria.stanford.edu/gitumors/hnpcc/differential-diagnosis.html.

Otani T, Iwasaki M, Sasazuki S, et al. Plasma C-reactive protein and risk of colorectal cancer in a nested case-control study: Japan Public Health Center–based prospective study. Cancer Epidemiol Biomarkers Prev 2006;15(4):690-5.

Chan AT, Ogino S, Giovannucci EL, et al. Inflammatory markers are associated with risk of colorectal cancer and chemopreventive response to anti-inflammatory drugs. Gastroenterology. 2011;140(3):799-808. e2.

Kwon C, Cheng P, King IN, et al. Notch post-translationally regulates [beta]-catenin protein in stem and progenitor cells. Nat Cell Biol. 2011;13(10):1244-51.

Bandrés E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. MolCancer.2006;5(1):1.

Motoyama K, Inoue H, Takatsuno Y, et al. Over-and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34(4):1069-75.

Mazeh H, Mizrahi I, Ilyayev N, et al. The diagnostic and prognostic role of microRNA in colorectal cancer-a comprehensive review.J Cancer. 2013;4(3):281-95.

Li J-M, Zhao R-H, Li S-T, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33(1):24-9.

Link A, Balaguer F, Shen Y, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1766-74.

Kalimutho M, Blanco GDV, Di Cecilia S, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer.JGastroenterol. 2011;46(12):1391-402.

Force UPST. Guide to clinical preventive services: DIANE publishing; 1989.

Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975‐2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116(3):544-73.

Matsuda T, Marugame T, Kamo K-i, et al. Cancer incidence and incidence rates in Japan in 2005: based on data from 12 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J ClinOncol. 2011;41(1):139-47.

Schoen RE, Machicado JD. Detection of Advanced Neoplasia with FIT Versus Flexible Sigmoidoscopy Versus Colonoscopy: More Is More. Digestive diseases and sciences. 2015;60(5):1123-5.

Barry K. ABC of Colorectal Cancer. Ir Med J. 2012;105(7):252.

Colorectal Cancer Screening August 2014 [cited 2017]. Available from: https://www.asge.org/home/about-asge/newsroom/media-backgrounders-detail/colorectal-cancer-screening

Halligan S, Wooldrage K, Dadswell E, et al. Computed tomographic colonography versus barium enema for diagnosis of colorectal cancer or large polyps in symptomatic patients (SIGGAR): a multicentrerandomised trial. Lancet. 2013;381(9873):1185-93.

Galdino GM, Yee J. Carpet lesion on CT colonography: a potential pitfall. AJR Am J Roentgenol. 2003;180(5):1332-4.

Narula N, Ulic D, Al-Dabbagh R, et al. Fecal occult blood testing as a diagnostic test in symptomatic patients is not useful: A retrospective chart review. Can J GastroenterolHepatol. 2014;28(8):421-6.

Bini E. Use of upper endoscopy to evaluate patients with a positive faecal occult blood test and negative colonoscopy: Is it appropriateDig Liver Dis. 2006;38(7):507-10.

Levi Z, Rozen P, Hazazi R, et al. Sensitivity, but not specificity, of a quantitative immunochemical fecal occult blood test for neoplasia is slightly increased by the use of low-dose aspirin, NSAIDs, and anticoagulants. Am J Gastroenterol.2009;104(4):933-8.

Smith RA, Cokkinides V, Brooks D, et al. Cancer screening in the United States, 2011. CA Cancer J Clin. 2011;61(1):8-30.

Young G, St John D. Faecal occult blood tests: choice, usage and clinical applications. ClinBiochemRev .1992;13:161-2.

Allison JE, Sakoda LC, Levin TR, et al. Screening for colorectal neoplasms with new fecal occult blood tests: update on performance characteristics. J Natl Cancer Inst. 2007;99(19):1462-70.

Park DI, Ryu S, Kim Y-H, et al. Comparison of guaiac-based and quantitative immunochemical fecal occult blood testing in a population at average risk undergoing colorectal cancer screeningAm J Gastroenterol . 2010;105(9):2017-25.

Zauber, Ann G, Knudsen AB, et al. "Evaluating test strategies for colorectal cancer screening—age to begin, age to stop, and timing of screening intervals: a decision analysis of colorectal cancer screening for the US Preventive Services Task Force from the Cancer Intervention and Surveillance Modeling Network (CISNET)." (2009).

Farands P, Vellacott K, Amar S, et al. Flexible fiberopticsigmoidoscopy and double-contrast barium-enema examination in the identification of adenomas and carcinoma of the colon. Dis Colon Rectum 1983;26(11):725-7.

Rockey D, Paulson E, Niedzwiecki De, et al. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet. 2005;365(9456):305-11.

Pickhardt PJ, Hassan C, Halligan S, et al. Colorectal cancer: CT colonography and colonoscopy for detection—systematic review and meta-analysis. Radiology. 2011;259(2):393-405.

Pickhardt PJ, Choi JR, Hwang I, et al. Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med. 2003; 349(23):2191-200.

Johnson CD, Chen M-H, Toledano AY, et al. Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med. 2008;359(12):1207-17.

Zou H, Harrington JJ, Shire AM, et al. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev. 2007;16(12):2686-96.

Chen W-D, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer–specific methylation of the nonexpressedvimentin gene. J Natl Cancer Inst. 2005;97(15):1124-32.

Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis.Gastroenterology. 2008;135(4):1079-99.

Sincic N, Herceg Z. DNA methylation and cancer: ghosts and angels above the genes. CurrOpinOncol 2011;23(1):69-76.

An SW, Kim NK, Chung HC. Genetic and epigenetic marker-based DNA test of stool is a promising approach for colorectal cancer screening. Yonsei Med J. 2009;50(3):331-4.

Gonzalez-Pons M, Cruz-Correa M. Colorectal Cancer Biomarkers: Where Are We Now? Biomed Res Int. 2015;2015.

Epidemiology-Etiology-Cancer Prevention-Gastrointestinal cancers [updated 13 Aug 2014]. Available from: http://www.esmo.org/Oncology-News/FDA-Approves-First-Non-invasive-DNA-Screening-Test-for-Colorectal-Cancer.

Where Will Cologuard Fit Into CRC Screening? August 15, 2014 [updated June 16, 2017; cited 2014 August 15]. Available from: http://www.medscape.com/viewarticle/829994

Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening.NEngl J Med. 2014;370(14):1287-97.

FDA Approves First Non-Invasive Colorectal Cancer Screening Test [updated september 1,2015]. Available from:http://journals.lww.com/oncology-times/blog/fdaactionsandupdates/pages/post.aspx?PostID=4.

DNA Analysis of Stool to Screen for Colorectal Cancer [updated September 2015]. Available from:https://www.healthnet.com/static/general/unprotected/pdfs/national/policies/DNAAnalysisofStooltoScreenforColorectalCancer.pdf.

Imperiale TF, Ransohoff DF, Itzkowitz SH, et al .Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population.NEngl J Med. 2004;351(26):2704-14.

Analysis of Human DNA in Stool Samples as a Technique for Colorectal Cancer Screening [updated January 2009]. Available from:https://www.bsneny.com/content/neny_prov_prot_MAU20429.pdf.

Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012;150(4):685-96.

Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230-3.

Mazurek S, Boschek CB, Hugo F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol; 2005: Elsevier.

Lin Y, Liu F, Fan Y, et al. Both high expression of pyruvate kinase M2 and vascular endothelial growth factor-C predicts poorer prognosis in human breast cancer. Int J ClinExpPathol. 2015;8(7):8028.

Diehl D, Hessel E, Oesterle D, et al. IGFBP‐2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis. Int J Cancer. 2009;124(9):2220-5.

Li R, Liu J, Xue H, et al. Diagnostic value of fecal tumor M2‐pyruvate kinase for CRC screening: A systematic review and meta‐analysis. Int J Cancer. 2012;131(8):1837-45.

Haug U, Rothenbacher D, WenteM,et al. Tumour M2-PK as a stool marker for colorectal cancer: comparative analysis in a large sample of unselected older adultsvs colorectal cancer patients. Br J Cancer 2007;96(9):1329-34.

Tonus C, Sellinger M, Koss K, et al. Faecal pyruvate kinase isoenzyme type M2 for colorectal cancer screening: a meta-analysis. World J Gastroenterol: WJG. 2012;18(30):4004.

VIM vimentin[ Homo sapiens (human) ] [updated 20-Mar-2016]. Available from: http://www.ncbi.nlm.nih.gov/gene/7431.

Xiao W, Zhao H, Dong W, et al. Quantitative detection of methylated NDRG4 gene as a candidate biomarker for diagnosis of colorectal cancer. OncolLett. 2015;9(3):1383-7.

Melotte V, Lentjes MH, Van den Bosch SM, et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer.JNatl Cancer Inst. 2009;101(13):916-27.

Kotipatruni RP, Ferraro DJ, Ren X, et al. NDRG4, the N-Myc downstream regulated gene, is important for cell survival, tumor invasion and angiogenesis in meningiomas. Integr Biol. 2012;4(10):1185-97.

Beck SE, Jung BH, Fiorino A, et al. Bone morphogenetic protein signaling and growth suppression in colon cancerAm J PhysiolGastrointest Liver Physiol . 2006;291(1):G135-G45.

Adjei AA. Blocking oncogenic Ras signaling for cancer therapy.Journal of the National Cancer Institute. 2001;93(14):1062-74.

Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer.2003;3(6):459-65.

Valente V, Teixeira SA, Neder L, et al. Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol. 2009;10(1):17.

Kwong LN, Dove WF. APC and its modifiers in colon cancer. APC Proteins: Springer; 2009. p. 85-106.

Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422-6.

Kawasaki Y, Senda T, Ishidate T, et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science. 2000;289(5482):1194-7.

Baker S. Preisinger AC, Jessup JM, et al.p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;507717.

Miller C, Koeffler H. P53 mutations in human cancer. Leukemia. 1993;7:S18-21.

Losso GM, MoraesRdS, Gentili AC, et al. Microsatellite instability-MSI markers (BAT26, BAT25, D2S123, D5S346, D17S250) in rectal cancer. ABCD ArquivosBrasileiros de CirurgiaDigestiva (São Paulo). 2012;25(4):240-4.

Dietmaier W, Wallinger S, Bocker T, et al. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 1997;57(21):4749-56.

Bacher JW, Flanagan LA, Smalley RL, et al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers. 2004;20(4-5):237-50.

Brennetot C, Buhard O, Jourdan F, et al. Mononucleotide repeats BAT‐26 and BAT‐25 accurately detect MSI‐H tumors and predict tumor content: Implications for population screening. Int J Cancer. 2005;113(3):446-50.

Hoang J-M, Cottu PH, Thuille B, et al. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res. 1997;57(2):300-3.

Bluemlein K, Grüning N-M, Feichtinger RG, et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget. 2011;2(5):393.

Kwon O-H, Kang T-W, Kim J-H, Kim M, et al. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level BiochemBiophys Res Commun. 2012;423(1):38-44.

PKM pyruvate kinase, muscle [Homo sapiens (human)] [updated 18-Mar-2016]. Available from: http://www.ncbi.nlm.nih.gov/gene/5315.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.