

A Systematic Review of Stem Cells in Iraqi Studies

Maeda H. Mohammad, Zaynab S. Abdulganii, Aous Kahtan Almzaien, Ahmed Majeed Al-Shammari, Ayser A. Ahmed, Hiba K. Shaker, Aseel K. Abedalsattar, Ahlam D. Armash

Iraqi Center of Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq

Corresponding Author: Ahmed Majeed Al-Shammari, Iraqi Center of Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq

E-mail: ahmed.alshammari@iccmgr.org

Received: 10, Jun, 2024

Accepted: 11, Jun, 2025

ABSTRACT

Over the past three decades, stem cell therapy has undergone rapid development and has emerged as a novel treatment for many major disorders. This systematic review aims to analyze the current landscape of stem cell research publications in Iraq comprehensively. By identifying and critically evaluating existing progress, this review provides a robust overview of the field, informing the development of a well-designed national roadmap for future advancements. This analysis serves as a valuable scientific reference both within Iraq and internationally, fostering further progress in Iraqi stem cell research. Data on Iraqi stem cell publications were collected from scientific databases such as the Iraqi Academic Scientific Journals Database, Google Scholar, Scopus, PubMed, Science Direct and other search engines. These publications were classified and analyzed to evaluate their status in the field. In our systematic review, we analyzed 132 articles on Iraqi stem cell research, including 21 review articles, 9 cancer stem cell studies, and 102 methodological studies, spanning from 1977-2024. Our findings highlight a rapid increase in publications, particularly in recent years, demonstrating significant progress in stem cell research within Iraq. Key areas of focus include the therapeutic applications of stem cells, cancer stem cells, and methodological advancements, with the majority of studies utilizing human, mouse, and rat samples. This comprehensive analysis underscores the evolving landscape and the need for continued collaboration and strategic planning in Iraqi stem cell research. Our systematic review revealed a significant increase in Iraqi stem cell research publications over recent years. This growth reflects substantial progress and the critical need for continued collaboration and strategic planning to further advance the field.

Keywords: Cancer stem cells; Clinical trial; Iraqi studies; Stem cells; Systematic review

INTRODUCTION

Stem cells are of interest because of their biological properties and potential medical importance in treating and repairing injured and damaged tissues. Stem cells are considered capable of proliferation, self-renewal, the production of a large number of differentiated progeny and the regeneration of tissue and can be used in regenerative and cellular therapies for many serious diseases. Currently, many biomedical approaches to regenerative medicine involve the use of stem cells¹. Stem cells are single cells that can replicate themselves to produce the same cells or differentiate into any of the specialized cells of embryonic or adult tissues. The two main types of stem cells classified according to their

developmental potency or origin can be divided into three types: totipotent, pluripotent and multipotent stem cells. Another classification of stem cells depends on their origin into embryonic stem cells, umbilical cord stem cells or adult stem cells². Many Iraqi stem cell studies have been published, and a systematic review is a complex piece of research that aims to identify, select and synthesize all research published on a particular question or topic. It adheres to a strict scientific design on the basis of prespecified and reproducible methods. They provide reliable estimates of the effects of interventions. In addition to illustrating knowledge about a particular intervention, systematic reviews can also show where knowledge is lacking.

Copyright © 2026 Tehran University of Medical Sciences. This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License (<http://creativecommons.org/licenses/by-nc/4.0>). Non-commercial uses of the work are permitted, provided the original work is properly cited.

Systematic reviews use a transparent and systematic process to define a research question, search for studies, assess their quality and synthesize findings qualitatively or quantitatively. A crucial step in the systematic review process is to thoroughly define the scope of the research question. This requires an understanding of literature, including gaps and uncertainties, clarification of definitions related to the research question and an understanding of the way in which these definitions are conceptualized within literature³.

This systematic review collected and summarized all the empirical evidence that fit pre-specified eligibility criteria and therefore answered the defined research question. Meta-analysis involves the use of statistical methods to summarize the results of these studies⁴.

This review focuses on Iraqi research in the stem cell field by performing a systematic review to assess the extent of Iraqi research in this field by systematically collecting and summarizing all the published outcomes to provide useful information on the basis of published articles.

MATERIALS AND METHODS

This study was carried out at the Experimental Therapy Department, Iraqi Center of Cancer and Medical Genetics Research (ICCMGR), Mustansiriyah University, Baghdad, Iraq. The scientific committee of ICCMGR (serial number 1 in 1/25/2021) approved this work.

Inclusion and exclusion criteria

The process of study selection was performed by identifying relevant Iraqi publications about stem cells. The inclusion data of all the articles used in this study were selected on the basis of their titles, abstracts, methods, and results, which are relevant to the outcomes of interest. All other studies were excluded if they did not meet the eligibility criteria. Each study was eligible if it fulfilled the following eligibility criteria: (i) full text available (ii) published; (iii) conducted in Iraq by Iraqi researchers. If more than one study presented the same data, the study with more complete data was included.

Study Selection and Data Collection

Published data on Iraqi stem cell publications were collected from scientific databases such as the Iraqi Academic Scientific Journals Database, Google Scholar, Scopus, PubMed, Science Direct and other search engines. These publications were classified and analyzed to evaluate their status in the field. Eligible studies were published between 1977 and 2024. The following data were extracted from each included study: name of the first author, year of publication, type of organism, type of study, type of sample, type of organ or tissue or cells, and type of technique.

Statistical analysis

The study was conducted in accordance with the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews)⁵. The PRISMA checklist was used to ensure the inclusion of relevant information in the analysis (Figure 2).

Statistical analysis for systematic review was performed via IBM SPSS (International Business Machines Corporation, IBM) (Statistical Package for the Social Sciences, SPSS) Statistics Software (version 25) to determine the frequencies, percentage values, and pie charts for all the variables used in this study.

RESULTS

One hundred forty-six (146) articles were used in this study. One hundred thirty-two (132) studies were eligible for the systematic review, which included 21 review studies, 9 cancer stem cell studies, and 102 methodology studies. In addition, 14 papers were excluded from the study (Figures 1 and 2).

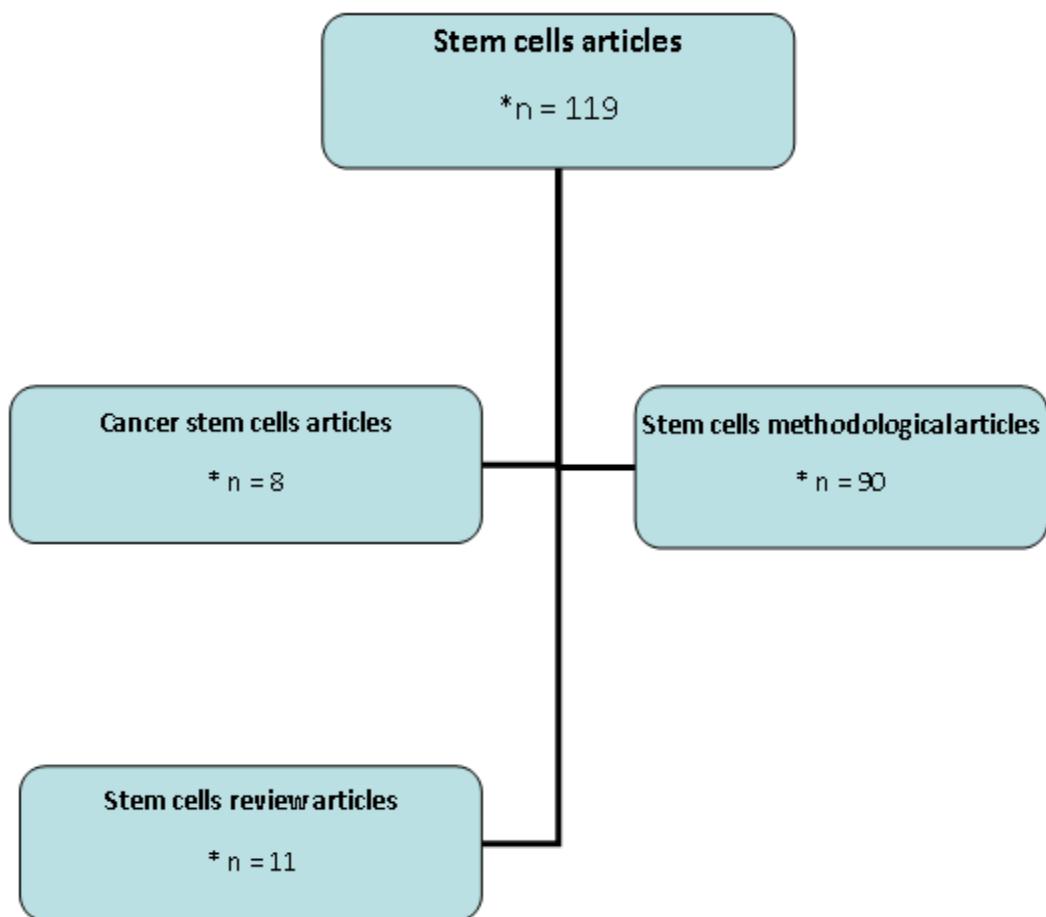
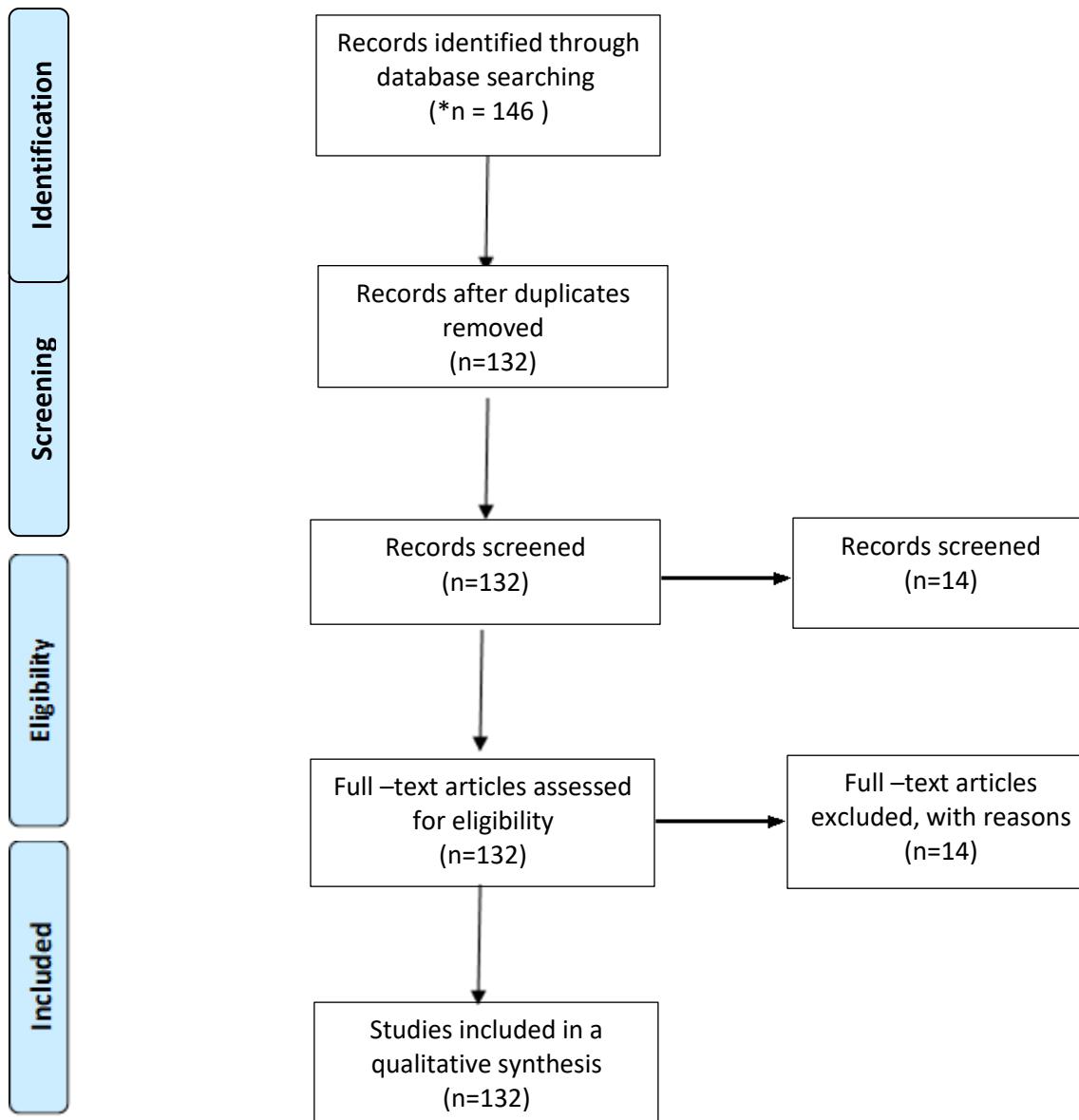



Figure 1. The division of Iraqi stem cells studies

Figure 2. Flow diagram of the study selection process for the systematic review (From: Moher et al.)⁵

*n = number of publication articles

*n = number of articles.

Study characteristics

In our study, these articles showed many characteristics included in this systematic review, which covered all the stem cells included in Iraqi research, were identified. The studies included 132 studies distributed across three types of articles (as mentioned above in Figure 2). The review articles (9 studies) included the author's first name, publication year, and article links (Table 1). The cancer stem cell articles (21 studies) included the authors' first name,

publication year, type of organism, type of study, type of sample, type of organ, tissue or cell, type of technique used, and article links (Table 2). The methodological studies (102 studies) included the authors' first name, publication year, type of organism, type of study, type of sample, type of organ, tissue or cell, type of technique used, and article links (Table 3).

Table 1. Characteristics of the review studies included in the systematic review

	authors first name	year	link
1	Alauldeen Mudhsfar	2016	https://doi.org/10.29409/ijcmg.v9i1.177
2	Ban J. Qasim	2015	https://iraqijms.net/index.php/jms/article/view/81
3	Saba S. Alsarraj	2014	https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/523
4	Amina N. Althwani	2007	https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Ch_fzIAAAAJ&cstart=200&pagesize=100&sortby=pubdate&citation_for_view=Ch_fzIAAAAJ:dtYEWd-f8wC
5	Waheed K. Ibrahim	2014	https://www.iasj.net/iasj?func=fulltext&ald=97422
6	Khalifa E. Sharquie	2016	http://www.odermatol.com/2016-2-11/
7	Araz Jaffar	2009	https://research.amanote.com/publication/4ZX22HMBKQvf0Bhi6EJZ/effect-of-over-dose-synthetic-estradiol-17---hormone-on-some-peripheral-blood-parameters
8	Talib Fadhi Al-Zayadi	2019	https://muthmj.mu.edu.iq/cgi/viewcontent.cgi?article=1061&context=journal
9	Omar T. Hammoodi	2020	https://doi.org/10.31838/ijpr/2020.12.01.197
10	Navid Shomali	2020	https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.29324
11	Satar J. Rahi	2020	https://medic.upm.edu.my/upload/dokumen/2020042010381637_MJMHS_0147.pdf
12	Thekra Abdulaali Abed	2022	https://cdnx.uobabylon.edu.iq/research/MwBgS0vD5kOQ8Ajqkla00w.pdf
13	Ghassaq T. Alubaidi	2022	https://journals.lww.com/mjby/fulltext/2022/19030/stem_cells__biology,_type_s,_polarity,_and_2.aspx
14	E.K AL-Hamdany	2022	https://www.researchgate.net/publication/362311257_Identification_and_Characterization_of_Canine_Mammary_Tumors_Stem_Cells_A_Review
15	Mustafa Bakhtiar Wend	2023	https://search.mandumah.com/Record/1382281/Details
16	Zainab Abdelelah Abdel Kareem	2022	https://uomosul.edu.iq/en/regionalstudiescenter/wp-content/uploads/sites/27/2024/05/The-Position-of-Heavenly-Religions-and-Legislation-on-Stem-Cell-Therapy-Experiments.pdf
17	Mustafa Bakhtiar Wend	2023	https://mabdaa.edu.iq/wp-content/uploads/2023/03/3-%D8%A7%D9%84%D8%AD%D9%83%D9%85-%D8%A7%D9%84%D8%B4%D8%B1%D8%B9%D9%8A-%D9%84%D9%84%D8%B9%D9%84%D8%A7%D8%AC-%D8%A8%D8%A7%D9%84%D8%AE%D9%84%D8%A7%D9%8A%D8%A7-%D8%A7%D9%84%D8%AC%D8%B0%D8%B9%D9%8A%D8%A9.pdf
18	Ala'a Abdul-Nabi al-Medeni	2023	https://search.mandumah.com/Record/1407173/Details
19	Methaq Mueen Al-Kaab	2021	https://doi.org/10.29409/ijcmg.v14i1.322
20	Noah A. Mahmood	2022	https://www.semanticscholar.org/paper/Cancer-Stem-Cell-Markers-in-Iraqi-Patients-with-Mahmood/26b789f24991289d12256f2ad3326bf21262f7d9
21	Mohammed Siddiq Mohammed	2021	https://search.mandumah.com/Record/1236434

Table 2. Characteristics of human cancer stem cell studies included in the systematic review

	Authors first name	Year	Type of sample	Type of organ, tissue, cell	Technique	Link
1	Teeba k. Hadi	2014	Breast cancer tissue	tissue	*IHC	https://www.semanticscholar.org/paper/Detection-of-cancer-stem-cell-invasive-ductal-of-Hadi-Edan/68845afb48c4eabd9a8363d8e672ca90ff396482
2	Ahmed M. Hassan	2017	Renal cell carcinoma tissues	tissue	IHC	https://iraqijms.com/index.php/jms/article/view/494
3	Zaynab S. Abdulghany	2018	Cancer cell lines	cell line	Molecular	https://doaj.org/article/99ea93b5db0d4ec4b210f788148aadfd
4	Ramadhan T. Othman	2008	Brain tumor	tissue	**ICC	https://pesquisa.bvsalud.org/gim/resource/pt/emr-86155
5	Samar A. Alshami	2018	Ovarian tumor	tissue	IHC	https://iraqijms.net/index.php/jms/article/view/628
6	Murooj J. Mohammed	2019	Urinary bladder cancer	tissue	IHC	http://dx.doi.org/10.22159/ajpcr.2019.v12i6.33189
7	Hadeel I. Mohasen	2019	Prostate cancer	tissue	IHC	http://dx.doi.org/10.22159/ajpcr.2019.v12i6.33612
8	Noah A. Mahmood	2019	Papillary Thyroid Carcinoma	tissue	IHC	https://doi.org/10.1155/2019/1659654
9	Noorhan Sabih Al-Maliki	2024	Blood	***AML	Molecular	https://doi.org/10.54133/ajms.v6i1.577

* Immunohistochemistry

** Immunocytochemistry

*** Acute myeloid leukemia

Table 3. Characteristics of the methodological studies included in the systematic review

	Authors first name	Year	Type of organism	Type of study	Type of sample	Type of organ, tissue, cell	Technique	Link
1	Cheia Majeed	2015	Mouse	treatment	MSCs*	bone marrow	IHC	http://dx.doi.org/10.4236/scd.2015.54004
2	Rafal H. Abdalla	2016	Mouse	differentiation	MSCs	bone marrow	ICC	https://www.researchgate.net/publication/305932980
3	Ahmed M. Alshammari	2012	Mouse	isolation	NSCs**	brain	ICC	https://doi.org/10.1016/S1525-0016(16)36326-2
4	Akram R. Jabur	2017	Mouse	Tissue engineering	MSCs	bone marrow	Scanning electron microscope	https://doi.org/10.1016/j.egypro.2017.07.048
5	Baydaa A. Alqaisy	2014	Mouse	isolation	MSCs	bone marrow	microscopic	http://www.researchgate.net/publication/265784313
6	Baydaa A. Alqaisy	2014	Mouse	isolation	MSCs	bone marrow	ICC	http://www.researchgate.net/publication/265742747
7	Ahmed M. Alshammari	2013	Mouse	differentiation	MSCs	bone marrow	ICC	http://www.researchgate.net/publication/236651096
8	Ahmed M. Alshammari	2015	Mouse	differentiation	MSCs	bone marrow	ICC	https://www.researchgate.net/publication/274387098
9	Maeda H. Mohammad	2016	Mouse	differentiation	MSCs	bone marrow	ICC	https://www.researchgate.net/publication/282365388
10	Maeda H. Mohammad	2016	Mouse	molecular study	MSCs	bone marrow	molecular	https://doi.org/10.2147/SCCAA.S94545
11	Athraa Y. Al-Hijazi	2013	Mouse	isolation	Amniotic stem cells	tooth	IHC	https://ibcd.uobaghdad.edu.iq/index.php/ibcd/article/view/233
12	Zauhair A. Jaumh	2008	Rat	differentiation	Hepatic oval stem cells	Hepatic tissue	ICC	https://ijimc.uobaghdad.edu.iq/index.php/19JFacMedBaghdad36/article/view/1238
13	Raed H. Mohammed	2012	Rat	isolation	MSCs	bone marrow	ICC	https://pharmacy.uokerbala.edu.iq/wp/wp-content/uploads/sites/6/2014/10/pharmacy.uokerbala.edu.iq_images_jurnal_3rd%20non_6.pdf
14	Majeed Arsheed Sabbah	2011	Human	isolation	UCBSCs ***	placenta	ICC	https://ijcmq uomustansiriyah.edu.iq/index.php/ijcmq/article/view/58
15	Mohamed A. Mohammad	2013	Rabbit	treatment	MSCs	bone marrow	ICC	https://ibcd.uobaghdad.edu.iq/index.php/ibcd/article/view/205
16	Sarah M. Alsawalha	2015	Human	isolation	MSCs	bone marrow	ICC	https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/9756
17	Oday K. Luaibi	2015	Dog	treatment	MSCs	bone marrow	IHC	https://www.semanticscholar.org/paper/Ccomparative-study-between-the-effect-of-stem-cells-Luaibi/ea11bd59c52a005e66b5e3ec4894dc3ef416f49c
18	Oday K. Luaibi	2016	Dog	transplantation	MSCs	bone marrow	IHC	file:///C:/Users/hp/Downloads/166-Article%20Text-215-1-10-20181205.pdf
19	Intidar M. Manati	2009	Human	differentiation	MSCs	bone marrow	ICC	https://ijh.uobaghdad.edu.iq/index.php/ijh/article/view/1135
20	Abdulmajeed A. Homadi	2011	Human	transplantation	HSCs****	peripheral blood	Clinical response criteria	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840965/
21	Al Azawwi I.N.	2003	Mammalian	isolation	ESCs**** *	embryo	ICC	Ph.D. Thesis, College of Science, Al-Mustansiriyah Univ
22	Ahmed H. Al Bayaty	2010	Horse	treatment	MSCs	bone marrow	ICC	Ph.D. Thesis, College Veterinary Medicine, University of Baghdad
23	Al Jumely B.A.	2006	Mouse	isolation	MSCs	bone marrow	ICC	M.S.c. Thesis, College of Science, University of Baghdad

	Authors first name	Year	Type of organism	Type of study	Type of sample	Type of organ, tissue, cell	Technique	Link
24	Al Kubaysi S. M.	2012	Ewe	treatment	HSCs	peripheral blood	ICC	https://www.researchgate.net/publication/323664190_USING_THE_HEMATOPOETIC_STEM_CELLS_TO_TREAT_THE_IMMUNE_DEFICIENCY_IN_EWES#fullTextFileContent
25	Athraa Y. Alhijazi	2013	Mouse	treatment	Amniotic stem cells	tissue	IHC	https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/233
26	Intidar M. Manati	2009	Rat	isolation	MSCs	bone marrow	ICC	https://jih.uobaghdad.edu.iq/index.php/jarticle/view/1135
27	Karim A.M.	2013	Rat	treatment	MSCs	bone marrow	IHC	Ph.D. Thesis, College of Science for women, University of Baghdad
28	Intidar M. Manati	2007	Rat	treatment	MSCs	bone marrow	IHC	Ph.D. Thesis, College of Education (Ibn Al-Hitham), University of Baghdad
29	Mohamed A. Mohammad	2011	Rabbit	treatment	MSCs	bone marrow	IHC	Ph.D. Thesis, College Dentistry, University of Baghdad, Iraq
30	Baydaa H. Mutlak	2007	Human	treatment	UCBSCs	placenta	IHC	Ph.D. Thesis, College of Education (Ibn Al-Hitham), University of Baghdad
31	Muthanna I. Malik	2016	Mouse	Genetic study	MSCs	bone marrow	microscopic	file:///C:/Users/hp/Downloads/Cytogenetic effectsofalbendazoleonstemcellsmicebone.pdf
32	Faruk H. Al Jawad	2016	Human	Toxicity	HSCs	peripheral blood	microscopic	https://doi.org/10.29409/ijcmg.v9i1.181
33	Araz J. Mohamad	2009	Rat	Toxicity	MSCs	bone marrow	microscopic	https://research.amanote.com/publication/4ZX22HMBKQvf0Bhi6EJZ/effect-of-overdose-synthetic-estradiol-17---hormone-on-some-peripheral-blood-parameters
34	Rihab Nasr	2012	Mouse	molecular	MSCs	bone marrow	flowcytometry	https://ddl.mbrf.ae/book/8065104
35	Intissar N. Waheed	2011	Human	differentiation	UCBSCs	placenta	ICC	https://www.researchgate.net/publication/346333881_Neural_Cell_Differentiation_of_Mesenchymal_Stem_Cells_Isolated_from_Human_Umbilical_Cord_Blood_In_Vitro
36	Shalal M. Hussain	2015	Mouse	differentiation	MSCs	bone marrow	ICC	https://anjs.edu.iq/index.php/anjs/article/view/294/240
37	Abdulmajeed A. Homadi	2017	Human	transplantation	HSCs	bone marrow	Clinical response criteria	http://ectrx.org/forms/ectrxcontentshow.php?doi id=10.6002/ect.mesot2016.P21
38	Mahfoodha A. Umran	2016	Mouse	differentiation	MSCs	tissue	ICC	https://www.researchgate.net/publication/331974756_Comparative_Study_of_Expansion_and_Proliferation_of_Adult_Mice_Mesenchymal_Stem_Cells_Derived_from_Bone_Marrow_and_Adipose_Tissue
39	Ali Hasan	2011	Mouse	Toxicity	MSCs	bone marrow	microscopic	https://www.researchgate.net/publication/216868796
40	Raja Kummoona	2018	Rabbit	treatment	MSCs	bone marrow	microscopic	https://doi.org/10.15436/2471-0598.18.1879
41	Araz J. Mohamad	2009	Rat	Toxicity	MSCs	bone marrow	Cytotoxicity assay	https://research.amanote.com/publication/4ZX22HMBKQvf0Bhi6EJZ/effect-of-overdose-synthetic-estradiol-17---hormone-on-some-peripheral-blood-parameters
42	Intissar N. Waheed	2014	Rat	treatment	MSCs	bone marrow	IHC	https://doi.org/10.5897/AJB2014.13751
43	Majeed A. Sabbah	2017	Human	molecular	HSCs	bone marrow	molecular	file:///C:/Users/hp/Downloads/ijcmgadmin,+Journal+manager,+129034.pdf
44	Mohanad Kh. Alani	2015	Rat	treatment	MSCs	bone marrow	IHC	http://dx.doi.org/10.1155/2015/984146
45	M. A. Aladhami	1977	Fish	isolation	HSCs	embryo	microscopic	https://doi.org/10.1111/j.1440-169X.1977.00171.x

	Authors first name	Year	Type of organism	Type of study	Type of sample	Type of organ, tissue, cell	Technique	Link
46	Intissar N. Waheed	2010	Rat	differentiation	MSCs	bone marrow	ICC	https://www.researchgate.net/publication/275461815
47	Layla Alhasan	2015	Rat	treatment	MSCs	bone marrow	molecular	https://doi.org/10.1039/C5IB00206K
48	Athraa Y. Alhijazi	2015	Rat	treatment	MSCs	bone marrow	IHC	https://www.eajournals.org/wp-content/uploads/Expression-of-BMP7-in-bone-tissue-treated-with-Aloe-Vera.pdf
49	Nasheet G. Mustafa	2013	Mouse	molecular study	NSCs	brain	molecular	https://www.researchgate.net/publication/275274394
50	Baydaa H. Mutlak	2008	Human	differentiation	UCBSCs	placenta	ICC	https://www.researchgate.net/publication/275462281
51	Haidar H. Alfatlawi	2016	Human	Markers expression	HSCs	peripheral blood	flowcytometry	DOI: 10.4103/2072-8069.198119
52	Farooq I. Mohammad	2012	Human	molecular study	ESCs	embryo	molecular	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459939/
53	Mohammed A. Alzubaidi	2016	Human	molecular study	MSCs	bone marrow	molecular	https://pubmed.ncbi.nlm.nih.gov/27783707/
54	M. H. Mohammed	2012	Chicken	Virus replication	MSCs	embryo	ICC	http://jwpr.science-line.com/index.php?option=com_content&view=article&id=13&Itemid=15
55	Intissar N. Waheed	2010	Mouse	differentiation	ESCs	embryo	ICC	http://jjbs.hu.edu.jo/files/v4n3/final%20published%202022-8-2011.pdf
56	Entedhar K. Hussain	2015	Human	differentiation	UCBSCs	placenta	ICC	https://www.researchgate.net/publication/275462424
57	Abdul-Jabbar F. A.	2019	Human	differentiation	NSCs	brain	ICC	http://www.mmjonweb.org/text.asp?2018/1/7/2/69/24611
58	Bassim A. Jassim	2016	Rabbit	Histological study	ESCs	embryo	IHC	https://www.researchgate.net/publication/330738914_Histological_study_of_development_liver_in_Indigenous_Rabbits_Fetuses
59	Hana Kh. Ismail	2020	Mouse	Protective effect	MSCs	placenta	IHC	https://www.semanticscholar.org/paper/Protective-effect-of-placental-mesenchymal-stem-on-Ismail-Al-Sabawy/388a6e4fe9fb9a238b8428226eb590abe9b781d
60	Hebat Alla A. Abdulla	2018	Human	Toxicity	UCBSCs	placenta	microscopic	https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1b9zEW0AAAAJ&citation_for_view=1b9zEW0AAA AJ:7PzIFSSx8tAC
61	Maeda H. Mohammad	2020	Mouse	differentiation	MSCs	tissue	ICC	https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0235
62	Nidal K. Alrahal	2011	Human	cryopreservation	PBSCs**** **	bone marrow	microscopic	https://www.academia.edu/78499864/Alternative_Methods_of_Cryopreservation_of_Human_Peripheral_Blood_Stem_Cells_for_Marrow_Transplantation
63	Oday K. Luaihi	2015	Dog	treatment	MSCs	bone marrow	IHC	https://www.semanticscholar.org/paper/Comparative-study-between-the-effect-of-stem-cells-Luaihi/ea11bd59c52a005e66b5e3ec4894dc3ef416f49c
64	Wafaa Mohammed	2014	Human	transplantation	mononuclear cell	bone marrow	Clinical response criteria	file:///C:/Users/hp/Downloads/Complications _For_Bone_Marrow_Transplant.pdf
65	Zahra Altimimi	2018	Mouse	isolation	MSCs	Bone marrow	ICC	https://www.mendeley.com/catalogue/627fed12-7d4e-3687-92a1-04c84ea79793/
66	Zeyad A. Shabeeb	2018	Human	differentiation	UCBSCs	placenta	microscopic	https://www.iasj.net/iasj?func=fulltext&aid=165193
67	Maeda H. Mohammad	2019	Mouse	differentiation	MSCs	bone marrow	ICC	https://www.worldresearchersassociations.com/BiotechSpecialIssueMarch2019/42.pdf

	Authors first name	Year	Type of organism	Type of study	Type of sample	Type of organ, tissue, cell	Technique	Link
68	Omar A. Hamid	2016	Mouse	Tissue engineering	ESCs	embryo	ICC	https://www.researchgate.net/publication/307147622
69	Abdulmajeed A. Homadi	2019	Human	clinical trial	mononuclear cell	bone marrow	Clinical response criteria	https://pubmed.ncbi.nlm.nih.gov/30777565/
70	Snur M. A. Hassan	2019	Mouse	Markers expression	colon	tissue	IHC	https://doi.org/10.1155/2019/5134156
71	Nawal M Abdullah	2017	Human	Markers expression	colon	tissue	IHC	file:///C:/Users/hp/Downloads/Immunohistochemicalexpressionofnonneoplastic tumorsofcolon.pdf
72	Marta C.	2019	Human	transplantation	HSCs	peripheral blood	Clinical response criteria	https://pubmed.ncbi.nlm.nih.gov/30915157/
73	Rafal H. Abdalla	2018	Mouse	isolation	MSCs	bone marrow	ICC	http://doi.org/10.23937/2469-570X/1410054
74	Fadhel F. Kadhum	2019	Human	transplantation	mononuclear cell	bone marrow	Clinical response criteria	http://www.indianjournals.com/ijor.aspx?target=ijor:ijphrd&volume=10&issue=1&article=166
75	Khalida I. Noal	2019	Human	Markers expression	Prostatic Carcinoma	tissue	IHC	https://www.researchgate.net/publication/340645736
76	Hassan M. Abass	2020	Human	transplantation	PBSCs	bone marrow	Clinical response criteria	https://www.mdpi.com/2218-0532/88/1/12/pdf
77	Buthainah Alazzawi	2020	Human	differentiation	MSCs	bone marrow	ICC	file:///C:/Users/user/Downloads/The_Secretome_of_Mesenchymal_Stem_Cells_Prevents_I.pdf
78	Hamid H. Enezei	2020	Human	molecular study	Dental stem cells	Cell line	molecular	https://www.researchgate.net/publication/338954382
79	Jean El-Cheikh	2019	Human	treatment	PBSCs	bone marrow	Clinical response criteria	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349008/
80	Hassein A. Altoban	2018	Human	transplantation	mononuclear cell	bone marrow	molecular	http://www.ijhonline.org/temp/IraqiJHematol_8138-5520392_152003.pdf
81	Sarkawt Hamad	2019	Human	differentiation	hiPSC-*****CMs*	tissue	molecular	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831300/
82	Rasha H. Dosh	2019	Mouse	differentiation	Intestinal stem cells	tissue	IHC	https://pubs.rsc.org/en/content/articlelanding/2019/bm/c9bm00541b#divAbstract
83	Ihab Ali	2019	Human	isolation	***MeSCs *****	tissue	ICC	http://www.indianjournals.com/ijor.aspx?target=ijor:ijphrd&volume=10&issue=5&article=233
84	Khalid B. Arif	2019	Human	Marker expression	Breast cancer	tissue	ICC	https://www.researchgate.net/profile/Khalid_Arif5
85	Abdullatif A. Aljuboury	2019	Human	clinical trial	Dental stem cell	tooth	Clinical response criteria	http://www.indianjournals.com/ijor.aspx?target=ijor:ijphrd&volume=10&issue=10&article=171
86	Abdulmajeed A. Homadi	2019	Human	clinical trial	mononuclear cell	bone marrow	Clinical response criteria	https://medcraveonline.com/JSRT/JSRT-0500129.pdf
87	Ahmed M. Alshammari	2017	Mouse	treatment	MSCs	tissue	ICC	https://www.researchgate.net/publication/317498679
88	Ihab N. Safi	2019	Rabbit	treatment	MSCs	tooth	ICC	https://www.researchgate.net/publication/335716531
89	Rafal H. Abdalla	2016	Mouse	differentiation	MSCs	bone marrow	Scanning electron microscope	https://www.sciencedirect.com/science/article/abs/pii/S0891061816301326
90	Ihab N. Safi	2020	Human	isolation	hPDLSCs*****	tooth	Scanning electron microscope	http://creativecommons.org/licenses/by-nd/4.0/

	Authors first name	Year	Type of organism	Type of study	Type of sample	Type of organ, tissue, cell	Technique	Link
91	Ghada Firas Faisal	2019	Human	Evaluation of the Level of Stem Cell Factor	Stem cell factors	follicular fluid stem cells	enzyme-linked immunosorbent assay.	https://www.semanticscholar.org/paper/Evaluation-of-the-Level-of-Stem-Cell-Factor-in- and-Faisal-Al-kawaz/1384938bef0b54bdaa77ddbedd8a9 cbb2a1ca0eb
92	Fakhraldin Marwan Flaih	2022	Human	Clinical trial	Stem cell transplantation	Bone disease from Multiple Myeloma patients	Clinical response criteria	https://www.semanticscholar.org/paper/Assessment-of-Bone-Disease-in-Multiple-Myeloma-Stem-Flaih-aqabi/99df30f24b671f02b0f06c38da3ee771b9d 5cb58
93	Ahmed Kadhim Munahi	2023	Dog	Treatment: Regeneration of Acute Spinal Cord Injury	MSCs	Adipose tissue	IHC	https://scholar.google.com/citations?view_op=view_citation&hl=en&user=D1a3u_wAAAAJ&citation_for_view=D1a3u_wAAAAJ:mVmsd5A 6BfQC
94	Nibras Hatim Khamees	2023	Human	differentiation	MSCs	bmMSCs*** *****	ICC & microscopic	https://journals.lww.com/mtmj/Fulltext/2022/21 020/The_Impact_of_Media_Supplement_on_th e_Viability..12.aspx
95	Wissam Abdullah Alhayani	2022	Rat	treatment	MSCs	Skin wound healing	Microscopic & IHC	https://www.semanticscholar.org/paper/The-Efficacy-of-Mesenchymal-Stem-Cells-loaded-in-on-Alhayani/0a252c59bba1e47c3ca7bafdf5e0a0b25 65fa5d4f
96	Aqeel Kazim Mohsen	2024	Human	treatment	Adipose stem cells	Adipose tissue	Clinical responses	https://iasj.rdd.edu.iq/journals/uploads/2025/08/ 14/97efdb2b553564b7d60bbdd035d78991.pdf
97	Furqan M. Abdulelah	2022	Human	Case study	Stem cells transplantation	HSCs	Clinical responses	https://doi.org/10.32947/ajps.v22i4.958
98	Abdullah, Safiya Khalid	2023	Human	Molecular study	Gastric Epithelial Stem Cells	Gastric disease	Gene expression	https://journals.lww.com/mtmj/fulltext/2023/ 22010/analysis_of_correlation_between_the_i mportant.18.aspx
99	Ghassan Khudhair Esmae	2024	Mice	Histopathological study	bmMSCs	liver	IHC	https://doaj.org/article/3c8d52f984f941f593202f 39dd4fcf1d
100	Maryam Abdhlkadhu m	2021	Human	Evaluated autologous hemopoietic stem cell transplant. cohort study	Bone marrow transplantation	Bone marrow for Hodgkin disease	Clinical responses	https://journals.lww.com/ijhm/fulltext/2021/100 10/the_outcome_of_relapsed_refractory_hodgki n_s.11.aspx
101	Alsajri , Alaa Hussein	2022	Human	Case report	Bone marrow transplantation	Bone marrow with Hodgkin disease	Clinical responses	https://journals.lww.com/ijhm/fulltext/2022/1 1020/cross_allergic_reactions_between_etopo side_and.19.aspx
102	Maeda H. Mohammad	2023	Mouse	isolation	NSCs**	MSCs	ICC	https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7280

* MSCs: Mesenchymal stem cells

** NSCs: Neural stem cells

***UCBSCs: Umbilical cord blood stem cells

**** HSCs: Hematopoietic stem cells

***** ESCs: Embryonic stem cells

***** PBSCs: Peripheral blood stem cells

***** hiPSC-CMs: Human induced pluripotent stem cells

***** MelSCs: Melanocyte stem cells

***** hPDLSCs: periodontal ligament stem cells

***** bmMSCs: Bone marrow-derived mesenchymal stem cells

Review articles

The Iraqi review articles published between 2007 and 2023 included 21 articles (Table 1), 23.81% of which were review articles published in 2022, followed by 14.29% in both 2023 and 2020, as shown in Figure³.

Most review articles address stem cells, their classification, importance and applications, hematopoietic stem cell transplantation⁶, stem cells present in periodontal cells⁷, and follicular vitiligo⁸.

Additionally, many review articles discuss the therapeutic characteristics of stem cells^{9, 10, 11, 12} discusses the role of stem cells in cancer therapy. Another study¹³ described cancer stem cells as the dark side of stem cells. Finally, in a very interesting review, 2014¹⁴ presented the necessary laws and legal conditions to extract stem cells from the human body and use them in treatment or transplantation.

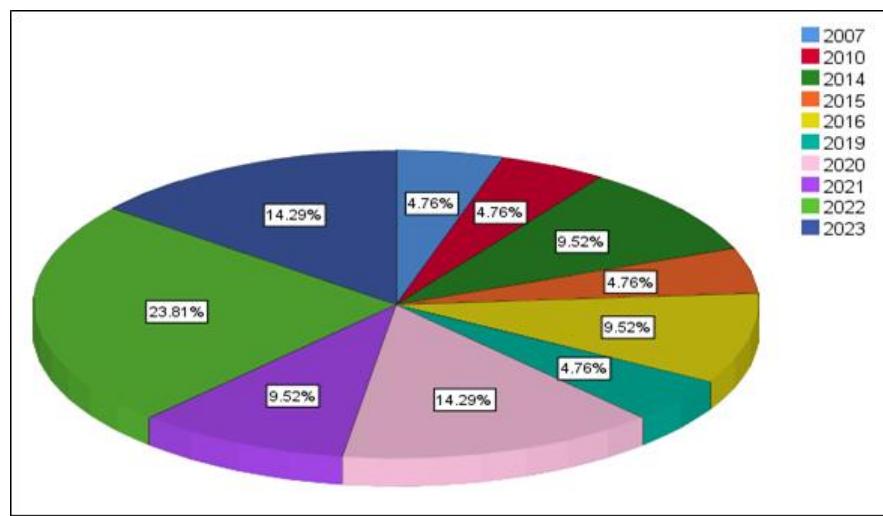


Figure 3. Stem cell publication years of the review studies included in the systematic review

Cancer stem cell articles

The Iraqi cancer stem cell articles published between 2008 and 2024 included 9 articles (Table 2), 33.33% of which were published in 2019, 22.22% in 2018,

and 11.11% in 2008, 2014, 20017, and 2024, as shown in Figure 4.

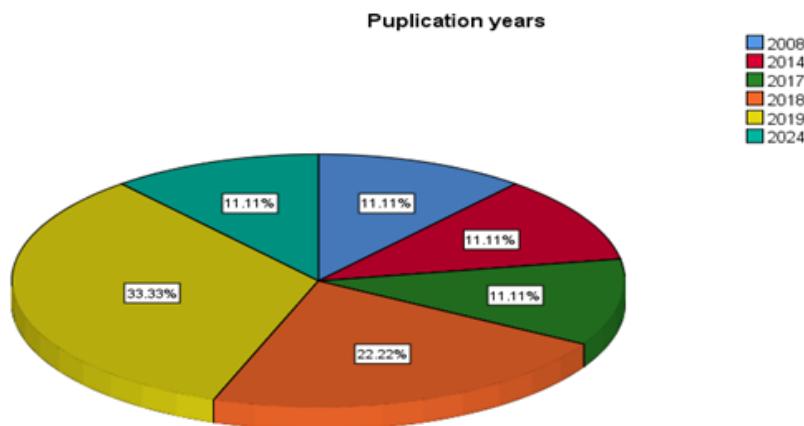


Figure 4. The publication of years of the cancer stem cell studies included in the systematic review

All the cancer stem cell articles used human samples in their studies; most of these studies used tissue as a sample (77.78%), only one study¹⁵ used a cell line,

and one study¹⁶ used AML as a study sample (11.11%) (Figure 5).

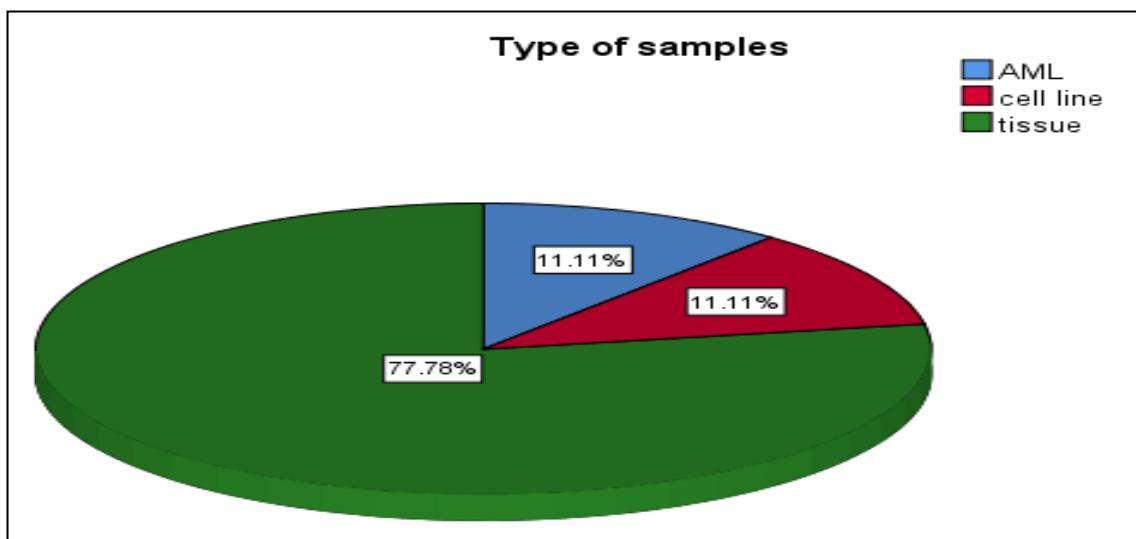


Figure 5. Types of samples of cancer stem cell studies included in the systematic review

The immunohistochemistry (IHC) technique was the most commonly used technique (66.67%), whereas

22.22% of the molecular studies and 11.11% for Immunocytochemistry (ICC) (Table 2, Figure 6).

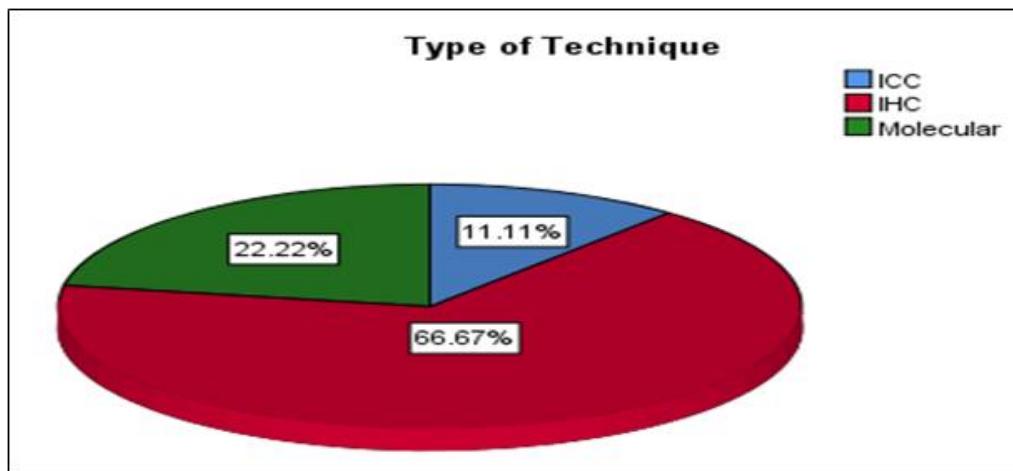


Figure 6. Types of samples in the cancer stem cell studies included in the systematic review

Methodological studies

The methodological Iraqi articles published between 1977 and 2024 included 102 articles (Table

3), 15.7% of which were published in 2019, 12.7% in 2016, and 8.8% in 2015, as shown in Figure (7).

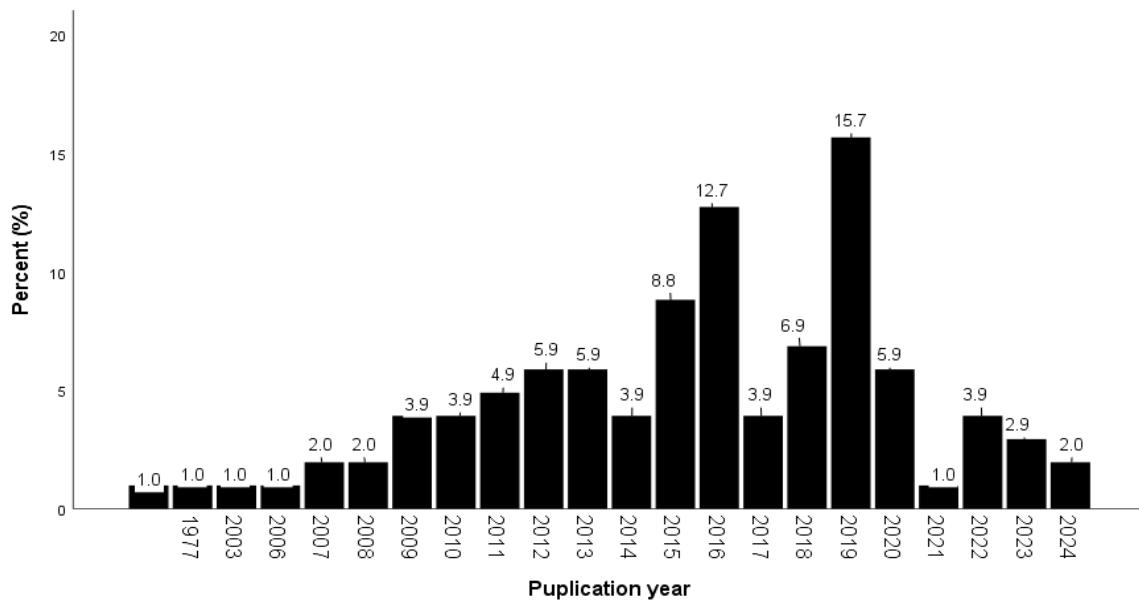


Figure 7. The percentages of publication years of methodological studies through 47 years

A high percentage of human stem cells studies (42.2%) were recorded in methodological studies,

which used human samples in their studies, followed by mice (29.4%) and rats (12.7%) (Figure 8).

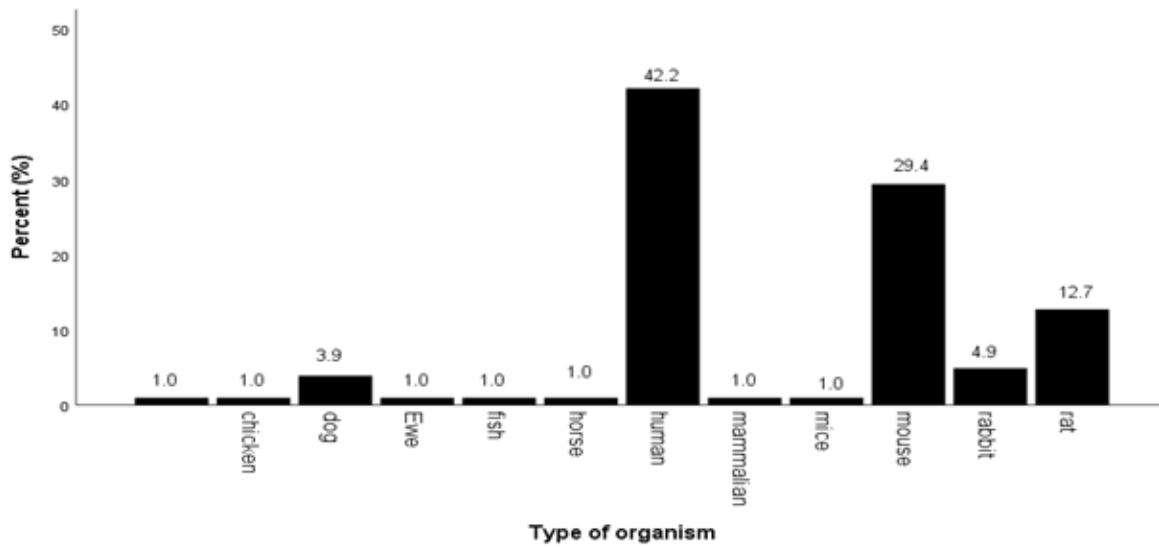


Figure 8. Percentages of different types of organisms included in the methodological studies

Differentiation studies were the highest 21.60% among other types of studies, it shows that 20.6% were treatment focus studies, and 14.7% were cells isolation focused studies (Figure 9). Most studies have used MSCs as main cells samples (48.0%), followed by hematopoietic stem cells (HSCs) and umbilical cord blood stem cells (UCBSCs), with 7.8%

and 6.9%, respectively (Figure 10). The most common type of organ used was bone marrow (48.0%), as shown in Figure 11. In addition, immunocytochemistry (ICC) was the most commonly used technique (35.3%), whereas immunohistochemistry (IHC) was used for 20.6%, as shown in Figure 12.

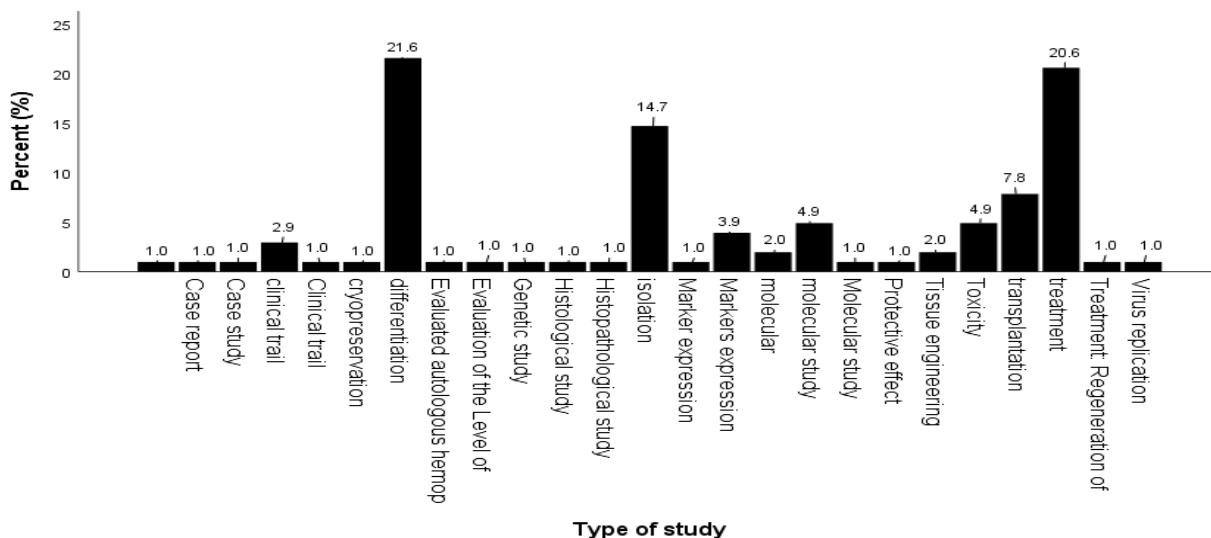


Figure 9. Percentages of different types of methodological studies

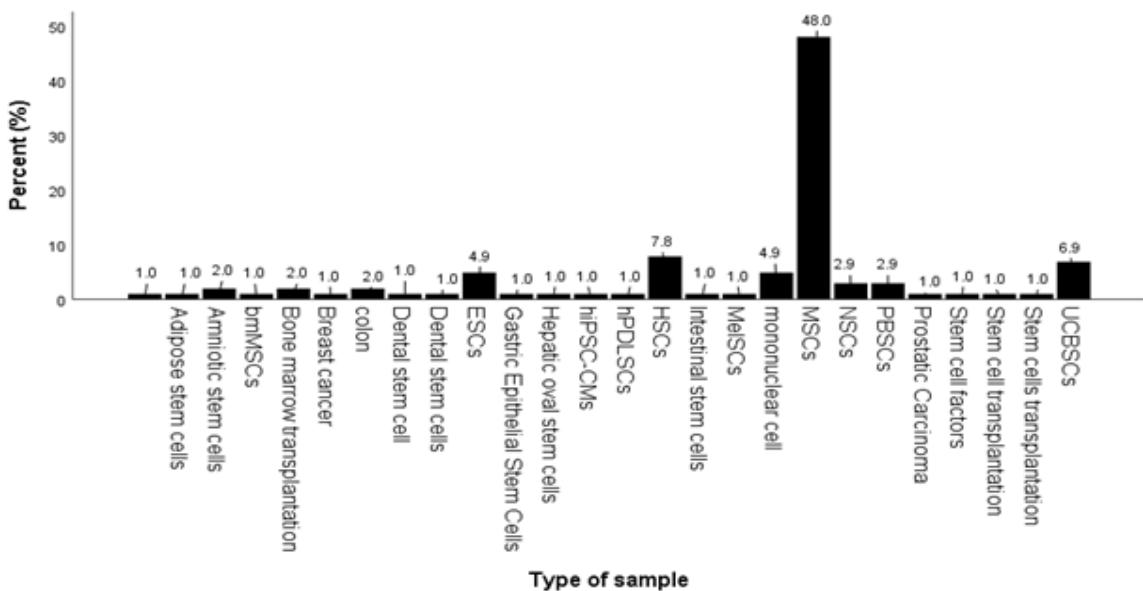


Figure 10: Percentages of different types of samples used in the methodological studies

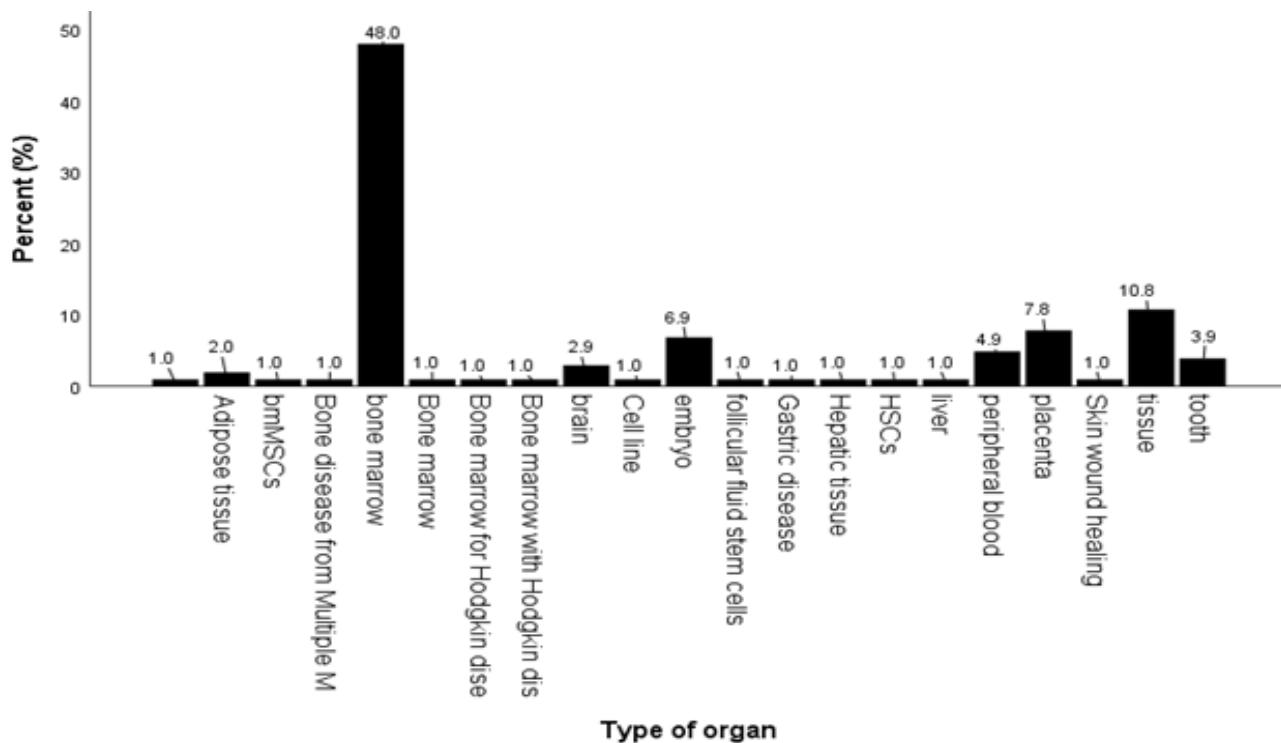


Figure 11. Percentages of different types of organs included in the methodological studies.

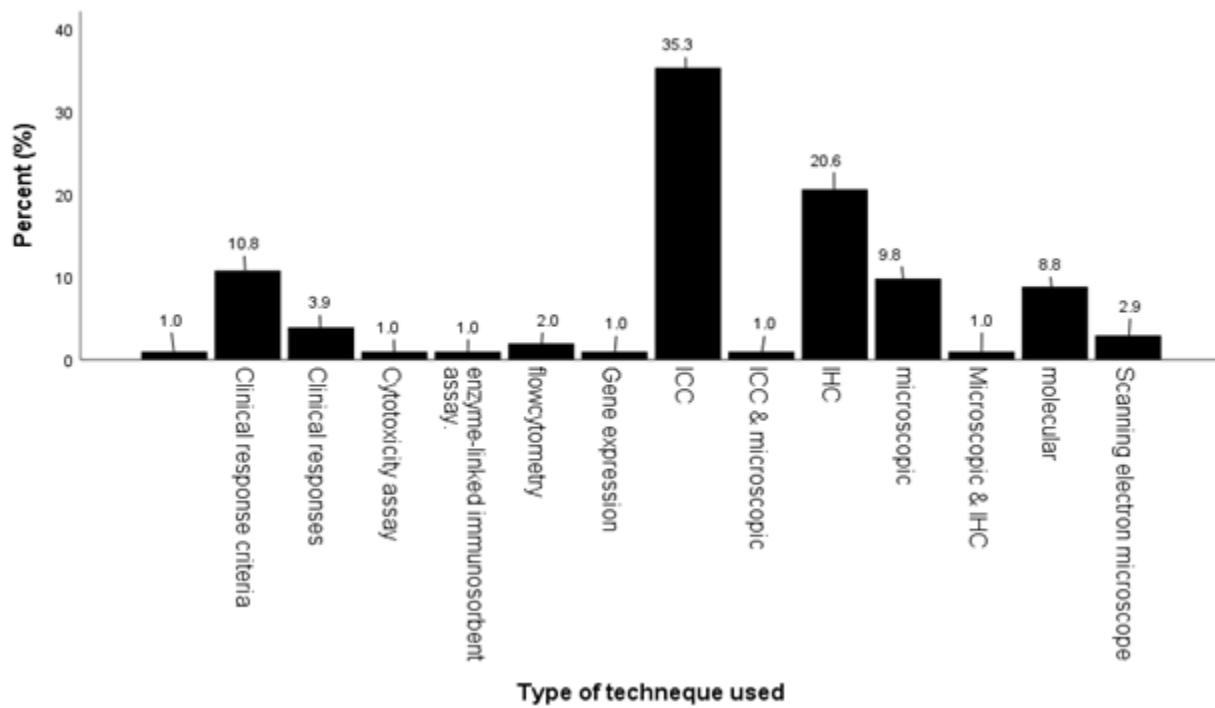


Figure 12. Percentages of different types of techniques used in methodological studies

DISCUSSION

Despite the presence of several obstacles in Iraq, several studies in the regenerative field, especially in the stem cell field, have focused on the isolation, detection and differentiation of many types of stem cells and their use in the treatment of many diseases. All these studies were performed in Iraq and started with isolation studies; this publication started in 1977 with an experimental study of stem cell isolation and proliferation in fish¹⁷. Mammalian embryonic stem cells were subsequently isolated in culture¹⁸, stem cells were isolated, and the ability of long-term culture of adult bone marrow stem cells in albino mice was studied¹⁹.

Several studies have successfully induced the differentiation of different stem cell types and used them for treatment, such as the isolation of adult bone marrow stem cells to treat myocardial-induced infarction in albino rats²⁰, the isolation of MSCs and HSCs from human umbilical cord blood and the study of their neurogenic differentiation²¹, and the isolation and differentiation of hepatic oval stem cells from rat hepatic tissue²². A study identified cancer stem cells in pediatric brain tumor gliomas²³. Since then, the number of published stem cell studies and reviews has increased to 133 (until the first half of 2021).

Several studies have been carried out at the Iraqi Center of Cancer and Medical Genetics Research (ICCMGR) within the Stem Cell Program in the Experimental Therapy Department of ICCMGR. This project started with the isolation, detection, differentiation and treatment of many types of stem cells and started with the isolation and characterization of MSCs from human umbilical cord blood²¹ and the isolation and characterization of MSCs from albino mice^{25,26,27}. Several studies subsequently isolated and differentiated MSCs from mice into different cell types, including Purkinje cells²⁸, islets of Langerhans-like cells²⁹, chondrocyte cells^{30,31}, motor neuron cells^{32,33}, neuron cells³⁴, neural stem cells^{35,36}, and adipose stem cells³⁷. Other studies have started to use stem cells for treatment, including the isolation of adipose-derived MSCs to improve the repair and regeneration of induced superficial digital flexor tendons in equine species³⁸,

the use of HSCs from the bone marrow of ewes to evoke the immune system in immunosuppressed sheep³⁹, the evolution of the effect of autologous bone marrow-derived stem cells on the healing of tooth sockets in diabetic rabbits in comparison with insulin-treated and healthy control groups⁴⁰, and the production of insulin-producing cells in diabetic mice⁴¹. Additionally, a study produced a scaffold for use in regenerative medicine in ICCMGR⁴². This scaffold was used in the isolation of human periodontal ligament stem cells (hPDLSCs) by implanting them in fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues⁴³. Recently, work in the stem cell field has continued in the ICCMGR field through many projects.

CONCLUSION

In the present study, we systematically reviewed all published articles on stem cells and found 146 Iraqi research studies on different methods. In conclusion, the number of studies on stem cells has increased significantly over the past twenty years, with different methods used in these studies. However, because of the small number of clinical trials for stem cell transplantation therapy, the lower frequency of patient anticipation and possible bias issues in trial designs, there is a possibility of bias. Therefore, further high quality and larger data studies are needed in the future to investigate the possibilities of stem cells in clinical settings. Additionally, further studies are needed to establish a database for Iraqi studies in different specialties.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest associated with this study.

ACKNOWLEDGMENTS

The authors would like to thank MUSTANSIRIYA UNIVERSITY (www.uomustansiriyah.edu.iq) and the Iraqi Center of Cancer and Medical Genetics Research (ICCMGR), Mustansiriyah University, Baghdad, Iraq, for their support.

Approval by the Ethics Committee/Institution Review Board

This work was approved by the scientific committee of the Iraqi Center of Cancer and Medical Genetics Research (ICCMGR), Mustansiriyah University, Baghdad

Data availability statement

The dataset created and/or analyzed during the current study will be provided if requested from the corresponding author.

Funding statement

This review was supported and carried out at the Experimental Therapy Department, Iraqi Center of Cancer and Medical Genetics Research (ICCMGR), Mustansiriyah University, Baghdad, Iraq.

Ethical approval statement

This ethical review project was approved according to the ethics of the ICCMGR scientific committee.

REFERENCES

1. Riazi AM, Kwon SY, Stanford WL. Stem cell sources for regenerative medicine. *Methods Mol Biol.* 2009;482:55-90.
2. Shah AA, Khan FA. Types and classification of stem cells. *Advances in application of stem cells: From Bench to Clinics*: Springer; 2021. p. 25-49.
3. Armstrong R, Hall BJ, Doyle J, et al. 'Scoping the scope' of a cochrane review. *J Public Health.* 2011;33(1):147-50.
4. Liu Z, Yao Z, Li C, et al. A step-by-step guide to the systematic review and meta-analysis of diagnostic and prognostic test accuracy evaluations. *Br J Cancer.* 2013;108(11):2299-303.
5. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009 Jul 21;6(7):e1000097.
6. Alqasim AMZ. Allogeneic Hematopoietic Stem Cell Transplantation for Solid Tumors. *IJCMG.* 2016;9(1):68-73.
7. Al-Sarraj SS, Saliem SS. Stem cells a novel approach to periodontal regeneration (A review of literature). *J Bagh College Dentistry.* 2014;26(3):89-97.
8. Sharquie KE, Noaimi AA. Follicular vitiligo: the present clinical status. *Dermatol Online.* 2016;7(2):176-178.
9. Mohammed RH, Jasim AM, Almanseekanaa LH. Isolation and characterization of bone marrowmesenchymal stem cells from rat and rabbit; a modified method. *Karbala J Pharm Sci.* 2012;3(3):44-51.
10. Hammoodi O, Hamid M, Hasan MS, et al. A Review in Regenerative Medicine: A Modern Therapy in Horses. *Int J Pharm Res.* 2020;12(1): 1074-1079.
11. Algraittee SJR, Ramasamy R. The Crosstalk between Mesenchymal Stem Cells and Damaged Cartilage in Osteoarthritis. *Mal J Med Health Sci.* 2020;16(2):262-268.
12. Al-Zayadi A, Al-Zayadi TFA. Stem cells a healing effect in cancer therapy. *Muthanna Med J.* 2019;6(8):1-13.
13. Qasim BJ. Cancer Stem Cells. *Iraqi J Med Sci.* 2015;13(3):203-205.
14. Waheed IN, Karim A, Gali MAH. The role of bone marrow derived mesenchymal stem cells in induced stroke. *Afr J Biotechnol.* 2014;13(47):4399-4409.
15. Abdulghany ZS, Mahmood NA, Tawfeeq AT, et al. Cyperus rotundus tubers extract inhibits stem cell markers expression in cervical and human glioblastoma cancer cell lines. *Iraqi J Med Sci.* 2018;16(2):159-165.
16. Al-Maliki NS, Zedan ZK. miRNA-126 as a biomarker for cancer stem cells: role in chemotherapy resistance in Iraqi patients with acute myeloid leukemia. *Al-Rafidain J Med Sci.* 2024;6(1):195-9.
17. Al-Adhami M, Kunz YW. Ontogenesis of haematopoietic sites in *Brachydanio rerio* (Hamilton-Buchanan)(Teleostei). *Dev Growth Differ.* 1977;19(2):171-179.
18. Al-Azawwi IN. Experimental study on culture of mammalian embryonic stem cells. Ph.D. Thesis, 2003, College of Science [Ph.D.]. Iraq: Al-Mustansiriyah University; 2003.
19. Al-Jumely BA. Long term culture of adult bone marrow stem cells in albino mice [Thesis]. Baghdad- Iraq: College of Science, University of Baghdad; 2006.
20. Mnati IM. In vivo and in vitro studies of adult bone marrow stem cells and its role in induced myocardial infarction in albino rats [Ph.D.]. Iraq: College of Education (Ibn Al-Hitham), University of Baghdad, Iraq.; 2007.
21. Mutlak BH, Hussain, Waheed IN. In Vitro Study Of Umbilical Cord Blood - Derived Stem Cells And Their Neurogenic Differentiation. *J Duhok Univ.* 2009; 12(1) (Special Issue):178-188.
22. Jaumah ZA, AL-Khafaji FA, AL-Khalisi MH. Regeneration, Proliferation and Trans-differentiation of Adult Hepatic Oval Stem Cells into Functioning Beta-Cells and Exocrine Acinar Cells of the Pancreas in Diabetic Adult Rats. *J Fac Med Baghdad.* 2008;50(4):491-6.
23. Ramadhan TO, Deema H, Beth C. Identification of cancer stem cells in paediatric brain tumour gliomas. *Dohuk Med J.* 2008;2(1):54-70.
24. Tropel PH, Noël D, Platet N, et al. Isolation and Characterization of Mesenchymal Stem Cells from Mouse Bone Marrow. *Exp Cell Res.* 2004;295(2):395-406.

25. AL-Qaisy BA, Yaseen NY, Alwachi SN, et al. Comparison between three different protocols for isolation and culture of mouse bone marrow derived mesenchymal stem cells. *Iraqi J Cancer Med Gen.* 2014;7(1):26-35.
26. AL-Qaisy BAY, NY Alwachi, Yaseen NY, et al. Isolation and Identification of mouse bone marrow derived mesenchymal stem cells. *Iraqi J Cancer and Med Gen.* 2014;7(1):49-55.
27. AlShammari AM, Al-Joboury AA, Yaseen NY, editors. Isolation and culture of neuronal stem cells which directed into Purkinje cells to be used for brain damage and epilepsy treatment in mice. *Molecular Therapy*; 2012: Nature Publishing Group 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA.
28. AL-Qaisy BA. In vitro Differentiation of Mouse Bone Marrow Derived Mesenchymal Stem Cells into Islet of Langerhans-like Cells. *Baghdad- Iraq: College of Science, University of Baghdad, Iraq*; 2013.
29. Alshammari AM, Salman MIU, M.A., Yaseen NY, editors. Chondrogenic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells, First Successes in Iraq. InXX International Congress of Mediterranean Federation of Health and Production of Ruminants, Egypt; 2013.
30. Alshammari AM, Salman MI, Umran MA. IN VITRO effect of differentiation factors on accumulation of COL1A1, COL2A1 and CRTAC1 for chondrogenesis of mice bone marrow mesenchymal stem cells. *IJRSB.* 2015;3(4):45-56.
31. Abdullah RH, Salih SM, Yaseen NY, et al. Differentiation of Mouse Bone-Marrow Mesenchymal Stem Cells into Motor Neuron Cells in vitro. *Al-Nahrain J Sci.* 2016;19(2):111-6.
32. Abdullah RH, Yaseen NY, Salih, SM, et al. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. *J Chem Neuroanat.* 2016;77:129-142.
33. Mohammad MH, Yassen NY, Al-Joubory AA, et al. Production of neural progenitors from bone marrow mesenchymal stem cells. *Stem Cell Discov.* 2016;6(1):1-12.
34. Mohammad MH, Al-Shammari AM, Al-Juboory AA, et al. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells. *Stem Cells Cloning.* 2016; 9:1-15.
35. Mohammad MH, Almzaien AK, Al-Joubory AA, et al. In vitro isolation and expansion of neural stem cells NSCs. *Baghdad Sci J.* 2023;20(3):18:787-798.
36. Mohammad MH, Al-Shammari AM, Abdulla RH, et al. Differentiation of adipose-derived mesenchymal stem cells into neuron-like cells induced by using β -mercaptoethanol. *Baghdad Science Journal.* 2020;17(Suppl.1):235-243.
37. Bayaty AHA. Harnessing Of Mesenchymal Stem Cells For Treatment And Rehabilitation Of Inducing Tendonitis In equine Species. *Baghdad- Iraq: University of Baghdad*; 2010.
38. Al-Kubaysi SM. Using of stem cells to evoke the immune system in Immunosuppressed Ewe.: *College Veterinary Medicine. University of Baghdad, Iraq.*; 2012.
39. Mohamad MA. The effect of Autologous bone marrow-derived stem cells with estimation of molecular events on tooth socket healing in diabetic rabbits.: *College Dentistry, University of Baghdad, Iraq.*; 2012.
40. Majeed C, Al-Shammari AM, Yausif EH, et al. BM-MSCs differentiated insulin-producing cells produce more insulin in presence of EGF than of FGF. *Stem Cell Discov.* 2015;5(4):33-39.
41. Jabur AR, Al-Hassani ES, Al-Shammari AM, et al. Evaluation of stem cells' growth on electrospun polycaprolactone (PCL) scaffolds used for soft tissue applications. *Energy Procedia.* 2017;119:61-71.
42. Safi IN, Al-Shammari AM, Ul-Jabbar MA, et al. Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue. *J Taibah Univ Med Sci.* 2020;15(5):363-373.