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Abstract
Messenger RNAs may be targeted by short 19-27 nt RNAs generally called Small none-coding RNAs 
(snRNAs), the role of miRNAs among other snRNAs has been more studied and is well known. Many 
researches show that all compartments of RISC, Proteins and miRNAs take part in this wide range of regulatory 
impacts. Ago protein homologs plus miRNAs and target mRNAs form a silencing complex in P-bodies which 
lead to either cleavage, conservation or surprisingly amplification of target mRNA or gene product. This article 
reviews conceptions which contribute directly or implicate this important post transcriptional mechanism’s 
function to differentiation or fate of pluripotent cells.
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Introduction 
Pluripotency is the ability of cells to differentiate 
into any fetal or adult cell type. Pluripotency is 
formed during early development and decoration of 
pluripotent cells. The OCT4 (POU5F1), SOX2 and 
NANOG transcription factors form the core of a 
network responsible for the transcriptional control 
of Embryonic Stem Cells (ESC) renewal and 
pluripotency.(1, 2)
The cytoplasm of an enucleated oocyte can induce 
pluripotency in the nuclei of somatic cells during 
nuclear transfer.(3)
Surprisingly, a high-throughput fluorescent in situ 
hybridization (FISH) screen developed by Eric 
Lécuyer and colleagues in the Krause lab. revealed 
that the majority (71%) of mRNAs expressed 
during embryonic development exhibit specific 
subcellular localization. Which suggest both a high 
regulation and potential of mRNAs in 
differentiation process . In cytoplasm of developing 
germ cells of many organisms RNA and proteins 
localize in germ-cell-specific cytoplasmic structures 
called P granules.(4)
In C. elegans, PGL-1 , GLH-1 and DEPS-1 are 
identified as critical components of P granules and 

are required for proper germ cell development.(5, 6)
DEPS-1 is required for RNAi (RNA interference) 
of germline-expressed genes, possibly because 
DEPS-1 promotes the accumulation of RDE-4, a 
dsRNA- binding protein required for RNAi.(7)
When ESCs differentiate, they must both silence the 
ESC self-renewal program and activate new tissue-
specific programs. In the absence of DGCR8 
(Dgcr8(-/-)) - DiGeorge syndrome critical region 
gene 8- a protein required for microRNA (miRNA) 
biogenesis, mouse ESCs are unable to silence self-
renewal.(8)
In Drosophila the genes zucchini (zuc) and squash
(squ) are required early during oogenesis for the 
translational silencing of osk mRNA and at later 
stages for proper expression of the Grk protein. 
Establishment of dorsal-ventral (DV) and anterior-
posterior (AP) axes is achieved through the 
localized translation of protein products of gurken
(grk) and oskar (osk) genes.(9) Zuc encodes a 
member of the phospholipase-D/nuclease 
family(10, 11) while squ encodes a protein with 
limited similarity to RNAase HII.(12) Zuc and Squ 
localize to nuage, an electron-dense structure 
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surrounding the nurse cell nuclei implicated in 
RNAi and RNA processing and transport.(13, 14)
Zuc and Squ physically interact with Aub 
(aubergin, one of the Piwi subfamily of Argonautes 
in Drosophila ), thus pointing to a direct role for 
these proteins in the RNAi mechanisms and are 
required for the biogenesis of Repeat associated 
small interfering RNA (rasiRNAs) in ovaries and 
testis. Accordingly, mutations in these genes 
abolish the production of this class of siRNAs and 
lead to the deregulation of transposable elements 
and tandem repeats in the Drosophila germline.(15)
Nuage granules disturbing, resulting in a 
displacement of the RISC components Ago2 and 
Dcr1.(16)
In male genetic content comes in imprints, meaning 
that pre-coded modifications take place during 
gametogenesis. In female as there is no mRNA 
synthesis between the end of the mouse oocyte 
growth phase and the first zygotic cleavage, post 
transcriptional mechanisms are essential for the 
natural formation of pluripotency. Ago2 the 
catalytic core of RISC has been shown to have a 
vital impact in normal development in both pre-
implantation and post-implantion stages, it is also 
shown that Ago 2 is essential in gastrulation and 
mesoderm formation.(17) MicroRNAs are 
endogenous small RNAs which target mRNA 
through a mechanism involving members of Ago 
protein family. Argonaute associated with miRNA 
binds to the 3’-untranslated region (3’-UTR) of 
mRNA, the Argonaute-miRNA complex can also 
affect the formation of functional ribosomes at the 
5’ end of the mRNA by competing with translation 
initiation factors and or abrogating ribosome 
assembly (Initiation).(18)
In addition, the Argonaute-miRNA complex can 
also alter protein production by recruiting cellular 
factors(peptidases, post-translational modifying 
enzymes) that will target the degradation of the 
growing polypeptides (Elongation).(19) P-bodies 
are suggested as either storage or degradation sites 
for mRNAs stocked in.(20, 21, 22) In this review, 
we would like to discuss and link progresses in 
RNAi as an important post transcriptional regulator 
of gene product to processes which later lead to 
development of a pluripotent cell into a 
differentiated cell.

RNA interference: Noncoding RNAs (ncRNAs) 
have key roles in the regulation of complex genome 
functions and plasticity in multicellular organisms. 
In vertebrates, long dsRNA activates the interferon 
response and yields nonspecific degradation of 

mRNA but they also participate in some regulations 
at gene level.(23)
In mouse embryo, paternally expressed long 
ncRNA Kcnq1ot1 regulates epigenetic gene 
silencing in an imprinted gene cluster in cis over a 
distance of 400 kb. Gene silencing by the Kcnq1ot1 
RNA involves repressive histone modifications, 
including H3K9me2 and H3K27me3, which are 
partly brought about by the G9a and Ezh2 histone 
methyltransferases. Analysis of conditional Dicer 
mutants reveals that the RNAi pathway is not 
involved in gene silencing in the Kcnq1ot1 cluster. 
RNA/DNA FISH shows that the Kcnq1ot1 RNA 
establishes a nuclear domain within which the 
genes that are epigenetically inactivated in cis are 
frequently found.(24)
In contrast small RNA (snRNA) duplexes with a 
length of 21-23 nucleotides trigger specific gene 
silencing and thus are widely used in gene function 
studies.  The pathway of RNAi consists of nuclear 
processing of the pri-miRNA by the microprocessor 
complex Pasha/DGCR8 and Drosha(25) generating 
pre-miRNA, while DGCR8 is involved in 
producing both siRNAs and miRNAs. After 
transcription, silencing the drosha cofactor pasha in 
Meloidogyne incognita, inhibits normal embryonic 
development within the eggs similar to that of 
drosha-silenced eggs, eventually leading to 
embryonic lethality.(26)
MiRNAs are then exported to the cytoplasm 
through Exportin-5,(27) where dicer cuts the stem 
loop region producing small double stranded 
RNA(dsRNA). Dicer, is essential for meiotic 
maturation of mouse oocyte. While Dicer deficient 
ES cells show defects in differentiation and 
pluripotency(28) loss of Dcr-1 in mouse ESCs 
results in the depletion of miRNAs and causes 
slower proliferation and differentiation defects in 
vivo and in vitro,(29, 28) Using conditional allele of 
dicer-1 (dcr-1) in the mouse, specific deletion of 
dcr-1 in the T cell lineage results in impaired T cell 
development and aberrant T helper cell 
differentiation and cytokine production. A severe 
block in peripheral CD8(+) T cell development was 
observed upon dcr-1 deletion in the thymus. 
However, Dicer-deficient CD4(+) T cells, although 
reduced in numbers, are viable and can be analyzed 
further. These cells are defective in microRNA 
processing, and upon stimulation they proliferate 
poorly and undergo increased apoptosis.(30)
Removal of Dicer in limb mesoderm phenotypically 
results developmental delays, in part due to massive 
cell death as well as disregulation of specific gene 
expression and finally formation of a much smaller 
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limb,(31) other data show expression of discrete set 
of microRNAs are expressed in hair follicles and 
epidermis, while dcr1 gene ablation in embryonic 
skin progenitors results not markedly differentiated 
cell without an increase in apoptosis.(32) Analysis 
of Dcr 1 -/- ESCs has also revealed defects in the 
centromeric chromatin, manifested as a loss of 
DNA methylation and histone H3K9 trimethylation, 
and an increased abundance of RNAs derived from 
centromeric repeats.(33, 29) In Dicer−/− ES cells, 
expressing Dicer at very low levels (~5%) the xi 
RNA levels were found to be significantly reduced 
upon differentiation and more importantly Dicer−/−
ES cells showed a lack of Xist and H3K27 
trimethylation foci characteristics of Xi 
chromosome suggesting direct role for dicer in X 
chromosome inactivation.(33) In contrast, there are 
papers which suggest no direct role for Dicer in 
Xist and H3K27 recruitment on to Xi.(34,35)
Back to RNAi pathway, dsRNA is then loaded onto 
the RNA induced silencing complex containing the 
RNA endonuclease Ago1, and unwound. Animal 
mRNAs typically base-pair imperfectly with the 3’-
UTR of target mRNAs, one of  miRNA strands 
would then act as guide strand, the guide strand 
confers specificity to the RISC complex that now 
recognizes mRNA targets that are in turn either 
degraded or translationally repressed.(36) MiRNAs 
can induce substantial mRNA degradation even in 
the absence of extensive base-pairing to their 
targets.(37) There are increasing evidences that 
miRNAs have important roles in differentiation of 
tissues, proliferating cells have altered patterns of 
microRNA expression, which can be used to 
identify the cell of origin and to subtype 
cancers.(38) Recently it has been shown that Tooth 
morphogenesis and ameloblast differentiation are 
regulated by micro-RNAs.(39) Antisense transcripts 
may also contribute to developmental regulation of 
key transcription factor genes by similar Dicer-
promoted mechanisms, in an experiment within the 
developing CNS, Emx2 antisense RNA contributes 
to post-transcriptional down-regulation of its sense 
partner.(40)
Surprisingly, specific cellular conditions can turn 
miRNAs from silencers to translational activators. 
Vasudevan et al., surprisingly found that human 
Ago2 activates translation of target mRNAs on cell 
cycle arrest caused by serum starvation or contact 
inhibition, while it normally represses translation of 
the same target mRNAs in proliferating cells.(41)
Lund and colleagues showed that miR-10a 
enhances translation of the reporter mRNA 
harboring a target site in the 5' UTR, although a 

regulatory 5' UTR motif, named “5'TOP motif”, is 
necessary for this enhancement.(42) Sarnow’s 
group reported that endogenous liver specific miR-
122 activates translation of hepatitis C virus (HCV) 
RNA which has two miR-122 target sites and an 
IRES in its 5' UTR.40.(43) These exciting new 
findings, however, have made it even more difficult 
to explain how miRNAs regulate post 
transcriptional events. 
Ago2, the catalytic core of RISC is involved in 
gastrulation and mesoderm formation.(17)
Eliminating zygotic expression of Ago2, indicated 
that there was no requirement for Ago2 until only 
after implantation.(44, 45) Systematic knockdown 
of maternal Ago2, 3, and 4, individually and in 
combination, it is found that Ago2 is required for 
development beyond the two-cell stage. 
Knockdown of Ago2 stabilizes one set of maternal 
mRNAs and reduces zygotic transcripts of another 
set of genes.(46) Hannon’s group generated a 
catalytically inactive mouse in which they replaced 
the endogenous allele by a carrying mutation in the 
DDH motif (Ago2ADH).(47) They observed that 
the animal underwent a normal embryogenesis but 
died within a few hours after birth and displayed 
severe sign of anemia. These embryos have an 
important reduction in red blood cell caused by a 
defect in the maturation of erythroid cells. These 
results represent the first evidence that the catalytic 
domain of Ago2 is essential for the survival of 
mammals. Intriguing studies by the Lei lab 
(NIDDK, NIH) provide evidence of a previously 
unknown role for the RNA silencing machinery in 
the regulation of gypsy insulator function and 
higher order chromatin organization in the nucleus. 
The gypsy insulator is thought to recruit a number 
of protein factors, including centrosomal protein 
190 (CP190), in order to establish nuclear bodies 
responsible for forming distinct chromatin 
loops.(48) The functional role for these chromatin 
structures may be to physically isolate regulatory 
modules for different genes into specific 
chromosomal domains. The RNA silencing proteins 
Piwi and Argonaute2 (AGO2) interact physically 
with the gypsy insulator in an RNA-independent 
manner. Piwi also co-localizes with gypsy nuclear 
bodies during larval stages.(49) In flies carrying 
mutations of Piwi or AGO2, gypsy insulator 
function is decreased, suggesting that these two 
factors are critical components of the insulator 
complex. Oocyte endogenous siRNAs derived from 
processed pseudogenes suggest that mammalian 
RNAi, in addition to roles in the suppression of 
mobile and repetitive sequences known from
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invertebrates, might also regulate endogenous 
genes.(50, 51) This hypothesis is now supported by 
the defective spindle phenotype of Dcr 1-/- and 
Ago2-/- oocytes, which is absent in Dgcr8-/-. 
Bioinformatic analysis of the Dcr 1-/- transcriptome 
show that many upregulated transcripts have 
complementary sequences to endo-siRNAs found in 
the oocyte.(52) They suggest a model in which the 
miRNA pathway becomes disengaged early during 
oocyte growth and RNAi becomes the dominant 
RNA silencing pathway essential for OZT (oocyte-
to-zygote transition), RNAi has been shown to be 
involved in axial polarization in the Drosophila 
germline.(53, 54) In this species, establishment of 
dorsal-ventral (DV) and anterior-posterior (AP) 
axes is achieved through the localized translation of 
specific mRNAs. The protein products of gurken
(grk) and oskar (osk) genes are essential for this 
process.(55, 56, 57)
Studies have reported that RNAs complementary to 
promoter DNA also inhibit gene expression. Human 
homologs of AGO1 and AGO2, EIF2C1 and 
EIF2C2 link the silencing pathways that target 
mRNA with pathways mediating recognition of 
DNA. There have been conflicting reports on 
whether Antigene RNAs (agRNAs) may induce 
DNA methylation.(58, 59, 60, 61, 62)

RNAi and Fertilization of oocyte: Fertilization-
union of sperm and egg- is an event that triggers the 
development of a new organism. Of note, male and 
female haploid complements of chromosomes are 
distributed as separate entities for some time prior 
to their incorporation into first diploid embryonic 
cells.(63) At the meantime post transcriptional 
regulations play an important role in formation of 
pluripotency. Major zygotic gene expression occurs 
at two-cell stage, corresponding to the time at 
which mRNA for the majority of maternal 
transcripts are degraded by a less known 
mechanism.(64, 46)
A small subset of genes present in mammals is 
expressed exclusively from chromosome of 
maternal or paternal origin. This mono-allelic gene 
expression is termed imprinting. In sperms key 
developmentally regulated genes (including HOX 
gene) are pre-coded during  spermatogenesis.(65)
HOXA1 is a direct target of miR-10a and miR-10a 
expression in differentiated megakaryocytes is 
inverse to that of HOXA1,(66) along with miR-10a,
miR-196a is expressed in patterns that are markedly 
reminiscent of those of Hox genes.(67) MicroRNAs 
located in and/or targeting HOX gene clusters were 
already discussed in details.(68, 69, 70, 71)

Maternal genome may also contain epigenetic pre-
coding of developmental significance but since 
oocytes cannot be obtained in quantity it is not 
proven yet. Imprints are established during 
gametogenesis by placing symmetric 5-
methylcytosine modifications in CpG dinucleotides 
of cis-acting control regions near imprinted 
genes.(72) These differentially methylated regions 
(DMRs) are methylated in either sperm or egg and 
are present in mature gametes. It is now also clear 
that post translational modifications of lysine and 
arginine residues present within nucleosomal 
histones also play major roles in epigenetic 
coding.(73) Mutation of H3.3 K27, but not of H3.1 
K27, results in aberrant accumulation of 
pericentromeric transcripts, HP1 (Heterochromatin 
protein 1) mislocalization, dysfunctional 
chromosome segregation and developmental arrest. 
This phenotype is rescued by injection of dsRNA 
derived from pericentromeric transcripts, indicating 
a functional link between H3.3K27 and the 
silencing of such regions by means of an RNA-
interference (RNAi) pathway (74). The role of 
RNAi in X-chromosome inactivation is reviewed 
by(75) chromosome inactivation results equivalent 
expression of X-linked genes and is mediated by cis 
coating of a long non-coading RNA termed Xist 
onto the future inactive X chromosome (Xi). Xist 
RNA is transcribed by RNA polymerase II (Pol II), 
is spliced and polyadenylated and located in the 
nucleus in a 3D domain along with genes which are 
silenced in X-inactivation procedure. RNAi 
machinery is intricately involved in the silencing of 
yeast centromeric chromatin via small RNA 
generated from the pericentric sense and antisense 
non-coding RNA and specialized protein complex 
named RNA-induced transcriptional silencing 
(RITS).(76) Ogawa et al., were able to detect 
distinctly sized small RNA of 24–42 nucleotides
corresponding to Repeat A, Exon-7 and promoter 
regions of Xist upon differentiation of ES cells 
which shows inverse correlation to Xi RNA.(77) In 
C. elegans a complex of proteins composed of ERI-
1/3/5/9, RRF-3, and DICER (the ERI/DICER 
complex) mediates RNAi processes , eri mutant 
animals (including eri-1, rrf-3, eri-3, and dcr-1) 
exhibit temperature-sensitive, sperm-specific 
sterility and defects in X chromosome 
segregation.(78)
Maintenance of heterochromatin domains by 
dsRNA binding proteins and small RNA has also 
been reported in plants and Drosophila (Kota,s., 
2009).
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Translational Repression mediated by miRNAs: 
Biochemically, translational repression is best 
understood in Drosophila, which possess at least 
two distinct RISCs that each mediate repression by 
different mechanisms. The first mechanism 
involves inhibition of translation initiation. 
Specifically, RISC formed from Drosophila Ago2 
can block protein-protein interactions between 
eIF4E and eIF4G, which are required to form a 
competent pre-initiation complex on the target 
mRNA.(79) Unlike the slicing reaction, 
translational repression does not require extensive 
sequence complementarity between guide and 
target RNAs. As a general rule, only bases 2-7 of 
the guide RNA are required to match a target to 
initiate translational repression.(80) Drosophila 
Ago1, on the other hand, represses translation by 
promoting target mRNA deadenylation and 
degradation. Ago1-RISC contains the protein 
GW182, which recruits the poly(A) deadenylation 
complex Ccr4-Not and the mRNA decapping 
complex DCP1- DCP2 to target messages.(81)
GW182 is also involved in directing target mRNAs 
to cytoplasmic foci called P-bodies, which are 
translationally inactive structures that function as 
sites of mRNA storage and/or degradation.(82)
Mammalian RISCs employ similar mechanisms of 
translational repression(83) however the relevant 
circumstances and exact mechanism(s) used by 
specific RISCs, have yet to be determined.
Early studies implicated miR181, whose expression 
is increased in thymus, lymphoid tissues, and bone 
marrow, in promoting B-cell differentiation. 
Ectopic expression of miR181 in mouse 
hematopoietic precursor cells leads to a dramatic 
increase in B lineage cells.(84)
A well characterized ESC miRNome is dominatied 
by miRNAs sharing a 5’-proximal AAGUGC 
motif.(85, 86, 87) These miRNAs can be divided 
into three groups and may also serve as molecular 
markers for the early embryonic stage and for 
undifferentiated ESC cells (I) EEmiRC miRNAs, 
found in placental mammals,(88) (II) the miR-17-
92 cluster -which are encoded as polycistrons from 
a single common transcript and its paralogues, 
which is conserved across verebrates and carries 
onco-miRs, this cluster can promote cell 
proliferation,(89) and (III) the miR-302/miR-467 
group, including the miR-302 family in tetrapods 
and the miR-467 family in mouse. Let-7 miRNA 
family is expressed in adult and differentiated 
animal tissues accumulation of let-7 can be 
preveneted by LIN28 a promoter of 
pluripotency.(90) Interestingly the opposing 

activities of let-7 and pluripotent miRNAs represent 
one of the features that distinguish pluripotent and 
differentiated cells.(8)
There are also multiple factors such as Tudor 
staphylococcal nuclease (Tudor-SN) that are 
considered as components of RISC in humans, flies 
and nematodes and is therefore implicated in the 
RNAi pathway, but apparently have no significant 
role in differentiation of Trypanosoma brucei.(91)

Transcriptional Silencing and Formation of 
Heterochromatin: Beyond targeting message 
RNAs, some RISCs act directly on the genome. The 
best studied of these assemblies is the fission yeast 
RITS (RNA Induced Transcriptional Silencing) 
complex, which contains Ago1 with an associated 
siRNA, a protein called Tas3 and the 
chromodomain protein Chp1.(76) The RITS 
complex interrogates nascent transcripts as they are 
generated by RNA polymerase II in the nucleus. 
Upon target recognition the complex recruits
histone methyltransferases, which modify histones 
associated with the DNA locus, forming 
heterochromatin.(92) The Chp1 subunit of RITS 
specifically recognizes histone-3 proteins bearing 
methylation on lysine-9, further reinforcing the 
association of the RITS complex with 
heterochromatin.(93)
The RITS complex also physically interacts with an 
RNA-directed RNA polymerase complex, which 
converts the targeted transcripts into dsRNA. Dicer 
then cleaves the dsRNA into new siRNAs, which 
can be loaded into new RITS complexes, thereby 
establishing a self-perpetuating silencing loop. 
Although the level of molecular detail is less well 
understood in other systems, plants and animals 
contain analogous systems for small RNA-guided 
formation of heterochromatin.(94) In particular, the 
Piwi clade appears to function in transcriptional 
silencing and formation of heterochromatin.(95)

Reversal of microRNA repression and mRNA 
localization in P-bodies in human cells: P-bodies 
are suggested as either storage or degradation sites 
for mRNAs. mRNA reporters repressed by 
miRNAs were found to localize in P bodies,(20)
Intracellular localization of the endogenous CAT-1 
mRNA and RL-cat reporters in cells grown under 
different conditions reveals that in nonstarved Huh7 
cells, CAT-1 mRNA is concentrated in P-bodies 
dependent on miR-122. Most importantly, in Huh7 
cells grown for 2 hours under amino acid deficiency 
CAT- 1 protein increases without an increase on the 
mRNA level. CAT-1 mRNA was no longer 
detectable in P-bodies Starvation did not produce an 
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appreciable decrease in the miR-122 signal in P-
bodies(36) arguing for an effect specific for the 
CAT-1 mRNA and possibly only a limited number 
of other mRNAs among the many regulated by 
miR-122 in liver cells.(96) Bhattacharyya et al., 
suggest that metazoan P-bodies are not only a site 
for mRNA turnover but also of storage of 
translationally repressed mRNAs. Interestingly, the 
same evidence is available for baker’s yeast, an 
organism lacking miRNA regulation,(22) other 
examples of reversible action of miRNAs have been 
identified in neuronal cells. In neurons, many 
mRNAs are transported along the dendrites as 
repressed mRNPs to become translated at the final 
destination, dendritic spines, upon synaptic 
activation such local translation is important for 
spine development, learning, and memory.(97)

Discussion
The process of cell differentiation by mechanisms 
such as heterochromatin formation can be fully 
reversed and does not require irreversible nuclear 
changes. When Xenopus nuclei were transplanted 
from fully differentiated cells, in this case from the 
intestinal epithelium of feeding tadpoles, entirely 
normal and fertile male and female frogs were 
obtained,(98) it involves changes in nuclear gene 
expression but not in gene content, if egg proteins 
can be exchanged in seconds or minutes for those in 
transplanted somatic nuclei, complete 
reprogramming should always take place.(99)
Reversal of mRNA from repression,(36) indeed is a 
process which may stimulate re-activation of a 
genetic material by physical and environmental 
factors such as pressure to provide cell with a signal 
to either stop, amplify or regulate a code, which 
may alter cellular function and would finally lead to 
differentiation. This also would suggest a role for 
accumulation of mRNAs in repressed form in P-
bodies or similar compartments, to save some 
genetic transcripts while at the same time 
destroying unwanted transcripts. This hypothesis is 
supported by experiments regarding attenuated 
expression of RISC members, which results not 
markedly differentiated cell without an increase in 
apoptosis.(32) Although it is still early to find an 
ultimate goal for RNAi mechanism, but it will not 
be surprising to implicate a memory function for 
RISC.
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