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ABSTRACT 
Background: Bone marrow derived mesenchymal stem cells (MSCs) are a population of multipotent 
progenitors which have the capacity of proliferation and differentiation into mesenchymal lineage cells.  

Hypoxia could promote the proliferation of MSCs. Micro-RNAs are endogenous RNAs that can play an 
important role in some processes such as proliferation and differentiation. MiR-210 could help for better 

proliferation of MSCs since this miRNA could activate HIF pathway. In current study we investigated if MSCs 

can preserve their differentiation and proliferation ability under normoxic conditions by upregulation of miR-
210. 
Materials and Methods: MSCs isolated from C57 BL/6 mice by flushing it’s femurs into the cell culture 
media. After 72 hours, MSCs which are plastic adherent cells were attached to the flask and non-adherent 
cells were removed. Subsequently, MSCs induced to differentiate into osteocytes and adipocytes with specific 
differentiation media in order to confirm their identity and multipotency. Then miR-210 was inserted in 

Lentiviruse vectors and affected MSCs.  In each passage, the number and viability of cells were evaluated. 
Results: Comparison between miR-210 infected MSCs with control cells showed that miR-210 has ability to 
increase proliferation of MSCs significantly. 
Conclusion: We showed that miR-210 has ability to induce proliferation of MSCs without any negative effect 
on their differentiation abilities. Further studies are needed for evaluation of probable effects of miR-210 
mechanisms on MSCs proliferation. 
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INTRODUCTION 

   MSCs are multipotent progenitors which reside in 
bone marrow, fat and some other tissues and can 
be isolated from various adult and fetal tissues.1-3 In 
vivo and in vitro, they are able to proliferate and 
differentiate into osteoblasts, adipocytes, 
chondrocytes and a variety of cell lineages.4-6 Self-
renewal potential7 and multipotency are the 

hallmarks of MSCs.8 MSCs comprise about 0.001% 
of bone marrow mononuclear cells.1 For clinical 
purposes, we need a large-scale of MSCs, thus we 
must induce proliferation in them to generate 
adequate number of cells. Hypoxia could promote 
the proliferation of MSCs. This finding were 
reported in different sources derived MSCs. Hypoxia 
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enhances proliferation of human MSCs,9 rat MSCs10, 
PB-MSCs11 and adipose-derived MSCs.12 
   MicroRNAs (miRNAs) are small conserved family 
of short (approximately 18–22 nucleotides) 
endogenous non-coding RNAs which are post-
transcriptional negative regulators of protein-
coding gene expression at the mRNA level via 
translational repression and/or mRNA 
degradation.13, 14 MiRNAs regulate gene expression 
via inhibition of RNA translation through binding to 
the 3′ untranslated regions (UTRs) of their target 
mRNAs by its seed sequence, 2–7 nucleotides in 5′ 
UTR, which is complementary to their target genes’ 
3′ UTR.15-18 MicroRNAs genes are involved in 
regulation of a wide variety of cellular mechanisms 
including proliferation, differentiation, apoptosis, 
and metabolism13, 19-26 as well as angiogenesis and 
tumorigenesis.20, 27-31  
   Hypoxamirs are a group of hypoxia-induced 
miRNA molecules which are highly upregulated by 
hypoxia. MiR-210, one member of hypoxamirs 
family, is a direct transcriptional target of Hypoxia-
inducible factor-1α (HIF-1α) which is robustly and 
ubiquitously expressed in a wide range of both 
normal and transformed hypoxic cells.15, 32-38  
   Hypoxia-inducible factor (HIF) is a heterodimeric 
transcription factor, which regulate the cellular 
response to hypoxia. HIF is composed of two α 
subunit (oxygen sensitive) and a β subunit 
(constitutively active). In normoxia, HIF-α is 
transcribed and translated but is rapidly degradated 
by the Von Hippel Lindau (VHL) protein.39-41 In 
hypoxia, HIF-1α is stabilized and accumulates for 
dimerization with HIF-β; this complex can bind to 
the specific sites in gene promoters named hypoxia 
response elements (HREs), and it transcriptionally 
regulates a variety of target genes.40-48 HIF1α 
directly binds to a highly conserved HRE on the 
proximal miR-210 promoter49 and upregulated miR-
210 gene. A wide spectrum of miR-210 physiological 
roles includes cell proliferation, angiogenesis, 
mitochondrial metabolism, DNA repair and cell 
cycle regulation.34,35 Due to the role of miR-210 in 
stem cell survival and proliferation,44 in current 
study, we investigated induction of mir-210 
upregulation on proliferation of mouse 
mesenchymal stem cells in normoxic conditions. 
 

MATERIALS AND METHODS 

Isolation, Culture, and Proliferation of MSC 

   Mesenchymal stem cells were collected from male 
C57Bl/6 mice  by flushing the femurs with 
Dulbecco’s modified Eagle’s medium-low glucose 
(DMEM, Gibco) supplemented with 10% fetal 
bovine serum (Invitrogen), 100 U/ml penicillin, and 
100 μg/mL streptomycin (Invitrogen). The obtained 
suspension was centrifuged at 300× g for 5 min. The 
pellet was resuspended in growth medium and 
incubated in 5% CO2 at 37 °C for 72h. After 3 days, 
the medium containing the non-adherent 
hematopoietic cells was removed from the flask, 
and fresh medium was replaced. After 
approximately 4 days, 7 days from isolation, the 
primary cells were passaged when BMSCs reached 
80% confluency. Adherent cells were retrieved by 
trypsinization and then replated.  
 
Differentiation Assays 

   MSCs were plated in duplicate in 24-well tissue 
culture plate, 6*104 cells per well, and then induced 
to differentiate. The cells were chosen from third 
passage. For adipogenic differentiation of MSCs, 
cells were cultured in adipocytic differentiation 
medium (100nM dexamethasone, 50µm 
indomethacine, 0.5mM isobutyl-1-methyl xanthine) 
for 14 days and stained with Oil Red O (Sigma). For 
osteogenic differentiation of MSCs, cells were 
cultured in osteogenic differentiation medium 
(50μM ascorbic acid, 10mM beta-glycerol-3-
phosphate, and 100nM dexamethasone) for 21 days 
and stained with Alizarin Red S (Sigma). 
 
Cloning pre- miR-210 

   pLenti-ΙΙΙ-mir-GFP containing the precursor of 
miR-210 were prepared from stem cell technology 
institute. (Figure-1: Map of plasmid) 

 
Fig1.The map of plasmid used in this study 
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Lentivirus Production & Infection of Target Cells 

   Lentiviral vectors expressing the transgene were 
produced by transfecting three plasmid systems 
(Packaging plasmid ps-PAX2, envelope plasmid 
pMD2.G and pLenti-ΙΙΙ-mir-GFP vector plasmids with 
insert fragments) into the producer cells (HEK-293) 
using the calcium–phosphate method. Culture 
medium was replaced 16 hours post-transfection. 
Vector-containing supernatants were collected 24h, 
48h and 72h post-transfection, then centrifuged, 
filtered and pooled. One day before transduction, 
MSCs (from passage 4) were plated in the 24-well 
plates (35× 103 cells/ well) and then transduced 
with 500µl of lentiviral vectors containing pLenti-
miR-210 and pLenti (without miR-210) as control; 
one well remained as negative control. The 
supernatant containing vectors that collected from 
HEK239 was added directly to MSCs without using 
any reagent for transduction. After 24h, the 
medium was replaced with fresh complete medium; 
and after 48h, the efficiency of transduction was 
evaluated by an invert fluorescent microscope. The 
infected cells were selected by means of puromycin 
with optimal effective dose of 2μg/ml. 2μg/ml of 

puromycin was add into the passage 1-3 in order to 
kill non-transfected cells. 
 
Evaluating the Effect of miR-210 on MSCs 
Proliferation 

   Every 72h, cells were tripsinized from each well 
(plasmid with and without miRNAs, and negative 
control) and counted with hemocytometer; their 
viability was quantified with trypan- blue assay. 
 
Statistical analysis 

   Data were analyzed by Student’s t test using SPSS 
version 16.00. P value less than 0.01 was considered 
as statistically significant. 
 
RESULTS 

MSCs Isolation, Culture and Differentiation  

   MSCs were isolated from the femurs of the 
C57Bl/6 mice by flushing. Non-adherent cells were 
removed after 3 days and fresh medium was added 
to the adherent cells. Approximately 4 days after 
isolation, spindle-shaped morphology was seen 
(Figure 2). 

 

 
  a  b 

Fig 2. Mesenchymal stem cells 96h after isolation (a), Mesenchymal stem cells 14 days after isolation-3th passage (b) 

 
   Differentiation assays, were carried out in order to 
confirm the osteogenic and adipogenic potential of 
cells. Alizarin Red staining for osteocytes and Oil 
Red staining for adipocytes were performed. 
Intracellular lipid vesicles in mature adipocytes 
were stained bright red with Oil Red stain; and 
extracellular calcium deposits in osteocytes were 

stained bright orange-red with Alizarin Red stain. 
(Figure 3) 
   The isolated cells were identified as MSCs by their 
adherence to plastic flasks, spindle-shaped 
morphology and differentiation potential.  
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 a b 

Fig 3. Oil Red O staining, intracellular lipid accumulation were stained bright red in adipocytes at day 14 (a), Alizarin Red S staining, 
calcium deposition were stained bright orange-red in osteocytes at day 21 (b) 

 
Recombinant lentivirus production and 
transduction of MSCs 

   In order to produce the lentiviral particles 
expressing pre-miR-210, packaging plasmid psPAX2, 
envelope plasmid pMD2.G and pLenti-ΙΙΙ-mir-GFP 
vector with inserted fragments were co-transfected 
into the HEK-293 using the calcium-phosphate 
method. 24, 48, and 72h after transfection, 
Lentiviral particles were collected from HEK293 
supernatant. MSCs from 4th passage were cultured 

in 24-well plates, 35 × 103 cells/well and infected by 
500μl of supernatants. 48h later, the GFP positive 
cells were seen by fluorescent microscope, about 
50% of MSCs were GFP positive. Because the 
infected cells were puromycin resistance, cells were 
cultured in medium containing 2μg/ml of 
puromycin in order to select infected cells. At the 
end of passage 3, 90% of cells were GFP positive. 
(Figure 4) 

 

 
 a b 
Fig 4. The GFP positive mesenchymal stem cells that infected with vectors without fluorescent microscope (a) and with fluorescent 

microscope (b) 

 
The number of passages, proliferation and viability 
of MSCs 

   Cell counting performed every 72h using 
hemocyometer; and cell viability of were assessed 

using trypan-blue assay. Cells proliferation 
evaluation has been continued up to 40 days. 
Results are shown in Table1 and Fig 5. 
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Table1. Cell Number (the average of duplicate pellets) and Viability of Mesenchymal Stem Cells in Control Group, Cells 

Containing Plasmid without miR-210 Group and Cells Containing Plasmid with miR-210 Group, in Each Passage. 

Viability of cells containing 
Plasmid with miR-210 

Plasmid with miR-210 Plasmid without miR-210 Control cells Passage number 

90% 35000 35000 35000 P 

70% 272000 267000 304000 P0 

75% 262000 251000 309000 P1 

85% 283000 259000 310000 P2 

85% 317000 288000 303000 P3 

90% 351000 280000 290000 P4 

85% 366000 276000 283000 P5 

85% 374000 265000 279000 P6 

85% 375000 258000 263000 P7 

85% 369000 252000 260000 P8 

85% 362000 246000 256000 P9 

80% 359000 239000 253000 P10 

80% 355000 237000 252000 P11 

 
 

 
Fig 5. Cell number (cell/ml). The control groups are presented in black, cells without miR-210 in white and with miR-210 in gray. 

*: P value less than 0.01 was considered as statistically significant (P< 0.01). 

 
DISCUSSION 

   Most previous studies investigated mesenchymal 
stem cell proliferation in hypoxic conditions.9-12 
Hypoxia can ragulates cell proliferation by the 
means of hypoxia-inducible factors (HIFs).15 
Induction of miR-210, major hypoxia-inducible 
miRNAs, is a feature of the hypoxic response in both 

normal and transformed cells.15, 34, 50-52 MiR-210 
functioned by targeting MNT, a known antagonist of 
MYC-dependent transcriptional activation and cell 
growth. Inhibition of MNT leads to activation of C-
MYC indirectly. C-MYC is a basic-helix-loop-
helix/leucine zipper (bHLH/LZ) transcription factor 
that controls the cell-cycle progression. The ability 
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of MYC to promote cell proliferation depends on its 
dimerization with MAX.49,53-56 MYC-MAX 
heterodimers bind to Miz1 at the transcription 
initiator element (INR) of the CDKN1A gene and 
consequently inhibit CDKN1A (coding p21) which 
results in cell cycle progression. Additionally, MYC-
MAX heterodimers can bind to E-box element 
(CACGTG) in the intron directly, and to the GC-rich 
region of the promoter through transcription factor 
Sp1 which leads to CDC25A expression and 
subsequently cell cycle progress. In contrast with 
former researches, in the current study, we 
investigated miR-210 over expression effects on 
mesenchymal stem cells proliferation in normoxic 
condition.56-58 MiR-210 may mediate the 
proliferation and survival of MSCs by targeting 
MNT, a known MYC antagonist.53

 

   Several studies indicated that MSCs are highly 
sensitive to oxygen pressure and hypoxia facilitates 
their proliferation. Ren et al (2006) described that 
under low oxygen tension (8% O2), Balb/c mice 
derived MSCs exhibited high proliferation 
potential.59 In Grayson et al (2007) study on human 
mesenchymal stem cells (hMSCs) under hypoxic 
atmospheres (2% O2), an approximate 9-fold 
expansion was observed at each passage for 
hypoxic cells, whereas under normoxic 
atmospheres (20% O2) only 5-fold expansion was 
seen in each passage.9 In 2007 Fehrer et al., 
determine the proliferation capacity of MSCs at 3% 
and 20% pO2 in long-term culture (100 days) and 
represented that under ambient oxygen tension cell 
growth declined after several passages, whereas 
cells cultured in hypoxic conditions maintain the 
ability to proliferate.60 Another study done by Lee et 
al., (2008) indicated that Adipose-derived stem cells 
(ADSCs) which exposed to low O2 concentration 
demonstrated better survival and proliferation in 
comparison with ADSCs under ambient O2 
concentration.12 Dos Santos et al., (2009) indicated 
that human bone marrow (BM) MSC exhibited an 
early start of the exponential growth phase and 
subsequently a higher fold increase under hypoxia 
than normoxia.61 Wei-li et al., (2011) illustrated that 
hypoxia could enhance proliferation of PB-MSCs.11 
Wang et al in 2012 demonstrated that hypoxia (3% 
O2 treatment) can increase rat MSC proliferation by 
upregulation of phosphorylated p38 MAPK.10  

   In the present study, we showed that miR-210 
over expression leads to induction of mesenchymal 
stem cells proliferation in normoxic condition. Our 
results were in agreement with most studies in this 
area unless they investigated cell proliferation in 
hypoxic conditions and we just induced miR-210 in 
mesenchymal stem cells and studied its effects on 
MSCs expansion. 
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