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ABSTRACT 
Karyotype is one of the main constituents of the International Prognostic Scoring System (IPSS) and revised-
IPSS that are the cornerstones for the prognostication of patients with myelodysplastic syndromes (MDS). 
Del(5q), –7/del(7q), +8 and –Y are among the most extensively studied cytogenetic abnormalities in MDS. 
The same applies for normal karyotype. There are hundreds of other rare cytogenetic abnormalities that have 
been reported in MDS, included but not limited to –X, 3q abnormalities, +13/del(13q), i(17q), +21/–21. 
However, due to a very low number of patients, their impact on the prognosis of MDS is limited. Knowledge of 

the molecular consequences of different cytogenetic abnormalities allows us to modify treatment regimens 
based on drugs most active against the specific karyotype present, allowing for the opportunity to 
individualize MDS treatment and improve patient care and prognosis. 
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INTRODUCTION 

   Myelodysplastic syndromes (MDS) are a group of 
heterogeneous hematopoietic stem cell disorders 
characterized by ineffective hematopoiesis, bone 
marrow dysplasia and peripheral cytopenias with an 
increased susceptibility in transformation to acute 
myeloid leukemia (AML)1,2.The rapidly evolving 
methods in molecular oncology and cellular biology 
have provided insight into the molecular 
pathogenesis of MDS, offering great advances in 
diagnosis, gauging patient prognosis and treatment 
response1.With modern developments in diagnostic 
techniques, genetic abnormalities such as point 
mutations and copy-number abnormalities can be 
detected in a large number of MDS 
patients3.Metaphase cytogenetics are capable of 

identifying chromosomal abnormalities in up to 50% 
of patients, though most abnormalities (up to 80%) 
are detected via single-nucleotide polymorphism 
(SNP) microarrays and/or array comparative 
genomic hybridization (CGH) analysis nowadays3-5. 
More than 50% cases of MDS exhibit somatic point 
mutations that disrupt vital cellular processes, 
including but not limited to DNA repair 
mechanisms, signaling cascades, mRNA splicing and 
epigenetic gene regulation2,6.These data have 
expanded our understanding of MDS pathogenesis, 
unravelling biological pathways that can be targeted 
with novel agents and providing new developments 
in the treatment of MDS. Different combinations of 
chromosomal abnormalities and somatic point 
mutations contribute to the large clinico-pathologic 
spectrum of MDS7. 
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Disease karyotype contributes to the International 
Prognostic Scoring System (IPSS) score used in the 
prognostication of MDS patients. Acquired 
cytogenetic abnormalities are found in 40-50% of 
cases with MDS and the clinical implications of each 
individual karyotype play a crucial role in disease 
course and management3, 5. 
Identification of the specific genes affected by each 
cytogenetic abnormality has been challenging and 
the consequences of each abnormality are still 
being elucidated7.Some of the common, as well as 
rare cytogenetic abnormalities reported in MDS are 
discussed here. 
 

DEL(5Q)  

Deletions of the long arm of chromosome 5 (5q) are 
the most frequently found chromosomal 
abnormalities in MDS (up to 15% of diagnosed 
cases)3,8. MDS with del(5q) exhibits a 
heterogeneous clinical picture, divided into two 
large classifications based of clinico-pathology 
features, responsiveness to therapy and patient 
prognosis9.One subtype arises after prior exposure 
to cytotoxic chemotherapy (mainly alkylating 
agents) and/or radiation exposure and often shows 
additional chromosomal abnormalities and TP53 
mutations10-12.This subtype shows increased 
likelihood of leukemic transformation and shorter 
overall survival (ranging between 6-17 months, 
depending on the number/severity of other 
abnormalities)13.Conversely, patients with isolated 
del(5q) have a relatively better prognosis and a 
reduced risk of progression to AML (5–16% vs. 30–
45%)14.Patients with 5q– syndrome are included in 
this subtype. Patients with multiple cytogenetic 
abnormalities understandably follow an aggressive 
disease course with substantially lower complete 
response (CR) rates to lenalidomide in comparison 
to those patients with isolated del(5q) 
(approximately 3% vs. 67%)15.Importantly, specific 
deletions in 5q chromosome also dictate prognosis. 
For example, one study by Jerez et al.16 
demonstrated that deletions involving the 
centromeric and extreme telomeric regions of the 
5q chromosome and/or specific genes (such as 
MAML1andNPM1) are more likely to have 

additional chromosomal lesions and aggressive 
disease course.  
More studies have identified additional genes 
affected by del(5q) and their contribution to the 
complex pathophysiology of MDS. Loss-of-function 
mutations in ribosomal protein S14 (RPS14 gene) 
and several other genes encoding ribosomal 
proteins are implicated in del(5q) MDS and 
responsible for the characteristic erythroid 
phenotype of 5q– syndrome17. The haplo-
insufficiency of these ribosomal proteins results in 
impairment of pre-rRNA processing, ribosome 
synthesis and selective induction of the p53 
pathway in erythroid progenitors, halting cell-cycle 
progression and arresting erythropoiesis18. Pre-
clinical studies show that inactivation of p53 
abrogates the cell-cycle arrest in the erythroid 
progenitors, confirming the role of aberrant p53 
induction in ineffective erythropoiesis in 5q– 
syndrome19. Dysregulation of microRNA (miRNA) 
has also been identified. miRNA-145 and miRNA-
146a in particular are localized to chromosome 5q 
and are not expressed in del(5q) MDS progenitors. 
A pre-clinical study by Starczynowski et 
al.20identified that depletion of miRNA-145 and 
miRNA-146a leads to upregulation of their targets, 
identified Toll–interleukin-1 receptor domain–
containing adaptor protein (TIRAP) and tumor 
necrosis factor receptor–associated factor-6 
(TRAF6), resulting in inappropriate activation of 
innate immune system pathways and signaling20. 
These events lead to megakaryocytic dysplasia, 
thrombocytosis, and neutropenia20. Another study 
discussed the role of loss of APC gene, also located 
on chromosome 5q, in the pathogenesis of MDS in 
5q– syndrome21. 
Lenalidomide is the FDA approved standard of care 
for low-risk MDS with del(5q)22,capable of inducing 
cytogenetic CR in 50-60% of patients with up to 70% 
achieving transfusion independence23,24. However, 
in some patients, a fraction of the del(5q) MDS 
clone remains unaffected by lenalidomide  and 
persists despite CR, foreshadowing eventual disease 
progression and relapse25. In addition, the subgroup 
of patients harboring TP53 mutations with del(5q)  
show relative resistance to lenalidomide and are 
associated with short-lived treatment 
response11,12.These observations highlight the 
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importance of consolidating induction therapy as 
early as possible after getting the patient in CR. 
 
MONOSOMY 7, DEL(7Q) 

Chromosome 7 anomalies (mainly monosomy 7 or 
deletion of 7q) are reported in approximately 10% 
cases of de novo MDS and up to 50% of therapy-
related MDS3,26. Chromosome 7 abnormalities 
correlated with worse prognosis and reduced 
overall survival in MDS and other myeloid 
malignancies such as AML5. Commonly deleted 
regions on 7q identified in MDS are located at 
positions 7q22, 7q32-33, and 7q35-3627. A recent 
study by McNerney et al.28 demonstrated that the 
CUX1 gene (encoding a homeodomain protein) is 
under-expressed in myeloid neoplasms with –
7/del(7q). Another recent study analyzing driver 
mutations in MDS pathophysiology showed that 
3.5% of patients harbored inactivating mutations of 
the CUX1 gene29.CUX1 is thought to function as a 
tumor suppressor gene in myeloid progenitor cells 
by regulating the expression of proteins governing 
the cell-cycle28, 29. 
The MLL5 gene, encoding a histone 
methyltransferase, is another gene mapped to 
7q22. In the murine model, homozygous mutations 
in MLL5 results in impaired neutrophil function and 
erythropoiesis and a decreased repopulating 
capacity of hematopoietic progenitors, even in the 
presence of self-renewal stimuli30.Not only this, but 
cells with mutated MLL5 alleles showed marked 
sensitivity to demethylation-induced hematopoietic 
differentiation30. These data indicate that MLL5 
plays an important role in myeloid differentiation 
(via DNA methylation) and warrants its investigation 
as a predictor of response to hypomethylating 
agents such as azacitidine in patients with MDS. It is 
of note that although mutations in MLL5 have not 
been found in myeloid neoplasia, reduced 
expression of MLL5 does correlate with poor 
prognosis in AML2. EZH2 is another chromatin 
remodeler located on 7q36 and is mutated in 
approximately 6% of MDS cases, correlating with 
poor prognosis31. However, deletions in 7q do not 
result in the loss of the EZH2 gene32.Chromosome 
7q deletions are usually quite large and haplo-

insufficiency of multiple genes located in the 
deleted regions contribute to MDS pathology7. 
 
TRISOMY 8 

Trisomy 8 is also a common cytogenetic 
abnormality. Isolated trisomy 8 occurs in 
approximately 5% of patients with MDS and 
correlates with an intermediate prognostic risk 
(median overall survivalof23 months)33. One 
hallmark of +8 MDS is that the chromosomal 
aberration is thought to occur late during disease 
pathogenesis, as evidenced by its detection in 
myeloid progenitors and near absence in CD34+ 
stem cells34.+8 MDS cells  express high levels of anti-
apoptotic proteins (such as survivin) and exhibit 
strong resistance to apoptotic stimuli (such as 
gamma ray irradiation or withdrawal of growth 
factors)35. Knockdown of these anti-apoptotic 
proteins abolishes the survival advantage of the +8 
MDS clone and represents a potential targeted 
therapy that can be used in this subgroup of 
patients35. In addition, +8 MDS patients show 
remarkable response rates to immunosuppressive 
therapies (up to 67%), indicating an underlying 
autoimmune pathophysiology associated 
specifically with trisomy 836.The overexpression of 
anti-apoptotic proteins confers a survival advantage 
to cells harboring the +8 karyotype over normal 
hematopoietic progenitors, allowing the MDS clone 
to survive the autoimmune microenvironment 
while normal cells are destroyed as the MDS 
phenotype develops. 
 
Sex-chromosome abnormalities (–Y, –X) 
Acquired loss of a sex-chromosome (–Y, in males, –X 
in females) is an age-related phenomenon, but can 
also occur in association with hematological 
malignancies37. 
MDS patients with isolated loss of the Y 
chromosome are classified under the ‘very good’ 
prognosis group5. Ever since its first discovery in the 
1960s, deletion of the Y chromosome and its 
relationship with myeloid disorders has been under 
scrutiny. Since loss of the Y chromosome has been 
attributed to the normal aging process38 and the 
fact that MDS incidence increases with age, the 
association between –Y and MDS is unclear39. 
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Nonetheless, –Y is suggested to be a potential 
driver in myeloid disorders as evidenced by the 
pretreatment predominance of the 45, X, –Y 
karyotype followed by reappearance of normal 
karyotype during remission from acute leukemia.40 
Isolated loss of the Y chromosome is a frequent 
cytogenetic finding in MDS37. A study in 2008 
revealed that 14 of 142 patients (9.9%) with loss of 
chromosome Y developed MDS and reported a 3.8-
fold increase in the risk of developing MDS with –
Y39.Trisomy 15 may also occur concurrently with –Y, 
however, in the presence of trisomy 15, –Y appears 
to be benign39. Further studies will help elucidate 
the implications of simultaneous +15 and –Y. 
On the other hand, loss of the X chromosome in 
female patients is a relatively rarer defect (isolated 
–X: 0.2-0.3% patients; –X in combination with other 
chromosomal abnormalities: up to 1.5% patients) 
and correlates with an intermediate prognosis 
(approximately with a median overall survival of 16 
months)5,41,42.Turner’s syndrome is defined by the 
constitutional loss of the X chromosome, however, 
patients with Turner’s syndrome do not seem to 
have an increased risk of developing MDS and other 
hematologic malignancies than the general 
population43. Although –X is an easily detectable 
finding on conventional cytogenetics, further 
analysis such as phytohaemagglutinin-stimulated 
lymphocytes are required to distinguish 
constitutional loss of the X chromosome from an 
acquired loss of the X chromosome restricted to 
hematopoietic progenitors.44 

 
3q abnormalities  
3q abnormalities such as deletions, translocations 
and inversionsare rare occurrences in MDS but are 
categorized as poor-risk features due to short 
overall survival (median 20 months)3,5.Inv(3q) and 
t(3;3)(q21;q26) usually affect the MECOM gene at 
the 3q26 locus, leading to abnormal overexpression 
of the EVI1 (a zinc-finger nuclear protein) which 
results in uncontrolled proliferation and impaired 
differentiation of hematopoietic progenitors45. 
Chromosomal instability and interference with the 
activity of transcription factors (such as PU.1, 
GATA1 and RUNX1) are apparent mechanisms by 
which EVI1 overexpression leads to the MDS 
phenotype46-48. 

A recent multicenter study highlighted the potential 
of azacitidine as a specific therapy for MDS patients 
with 3q lesions. With an overall response rate of 
50% (CR: 29%) and a median overall survival of 10.6 
months, subgroup analysis also revealed that MDS 
patients with 3q21 translocations had substantially 
better response rates and overall survival49. In the 
same study, patients with increased expression of 
EVI1 without chromosome 3q lesions showed 
comparable response to azacitidine49. Specific 
therapy of MDS harboring 3q abnormalities can be 
elucidated with further studies. 
 
Trisomy 13, Del(13q)  
Trisomy 13 is also an uncommon anomaly in MDS, 
observed in about 0.2% of patients3,50,but is a 
recurrent abnormality with increased occurrence in 
AML (1-2% of cases)37. +13 usually presents with 
advanced MDS with excess of blasts and moderate 
to severe pancytopenia37, 50,hence categorized as a 
poor-risk cytogenetic feature (approximate median 
overall survival of 9.5 months)51.+13 shows a 
propensity for older patients (usually >70 years of 
age) and male predominance37,50.Since +13 is very 
rare in MDS, most information regarding its clinical 
implications and effects on prognosis is derived 
from its appearance in AML patients. Trisomy 13 
has shown a strong correlation between 
abnormalities in the RUNX1 and FLT3 genes. Up to 
87.5% of AML patients exhibiting the +13 karyotype 
show cooperating mutations in the RUNX1 gene, a 
transcription factor playing a vital role in 
differentiation of hematopoietic progenitors into 
mature blood cells52. Not only this, but +13 and 
cooperating RUNX1 mutations are strongly 
associated with abnormally high expression of FLT3 
(up to 5-fold increased expression)53. In AML with 
normal cytogenetics, FLT3 mutations are associated 
with aggressive disease and poor prognosis54. 
A report of two cases of AML harboring trisomy 13 
showed that single-agent therapy with high-dose 
lenalidomide was able to induce significant 
response with durable cytogenetic and morphologic 
CR55.Lenalidomide has already established a 
prominent role in the treatment of del(5q) MDS and 
may prove to be an attractive choice for +13 
myeloid neoplasms (including MDS), which are 
usually resistant to standard chemotherapy and 
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hypomethylating agents55.Keeping in mind the 
overexpression of FLT3 in these patients, FLT3 
inhibitors may also play a role as ‘individualized’ 
therapy for +13 MDS56, though this needs to be 
confirmed in clinical studies before its clinical 
application. 
Del(13q) not only occurs in a variety of hematologic 
malignancies, mainly those of lymphoid cells 
(chronic lymphocytic leukemia, multiple myeloma) 
but also occurs in myeloid disorders37. In contrast to 
trisomy 13, deletion of chromosome 3q occurs in 
about 2% of MDS cases57.The RB1 gene, a tumor-
suppressor gene involved in cell-cycle control and 
cellular differentiation, is located in the deleted 
regions of cells with del(13q)58.There is a strong 
association between the occurrence of del(13q) and 
therapy-related MDS and therapy-related AML, 
foreshadowing poor outcomes in this patient 
subgroup57, 59. 
 
Trisomy 21, monosomy 21 
Constitutional trisomy 21 is very well-known in the 
context of Down’s syndrome and is associated with 
an increased risk of AML and acute lymphoblastic 
leukemia37.Besides being a hereditary disease, +21 
may also occur as a clonal cytogenetic abnormality 
in hematologic malignancies. Like +13 (discussed 
above), +21 occurs much more frequently in AML 
than in MDS60.+21 occurs between 0.3-0.8% of MDS 
cases and is classified as one of the rare cytogenetic 
abnormalities in the disease5,61. MDS patients with 
trisomy 21 classically show low absolute neutrophil 
counts with mild anemia and thrombocytopenia5. 
There may also be an association with chronic 
myelomonocytic leukemia.61The molecular events 
that arise as a result of +21 are yet to be defined 
and this represents an area of great interest for 
future research. Currently, patients with isolated 
+21 are classified in the intermediate-risk group,37 
though some studies61 have reported that it could  
be better fitted in the poor-risk group. Prospective 
studies with large patient numbers will help classify 
the risk magnitude and prognosis of these patients. 
Monosomy 21 is also a rare cytogenetic finding in 
MDS (isolated –21 in 0.3% cases and in combination 
with other abnormalities in 0.5% cases)3,5. Like  
trisomy 21, the impact of isolated monosomy 21 on 
the prognosis of patients is limited due to 

insufficient number of patients and studies and is 
currently categorized under the intermediate-risk 
group62. It should be noted that monosomy 21 on 
karyotype may be present as a technical artifact, 
occurring randomly while cells are prepared for 
chromosomal band analysis. Thus, the finding of –
21 on karyotype may not represent a true 
monosomy and should be confirmed with additional 
techniques such as fluorescence in situ 
hybridization to avoid false positives63. 
 
Isochromosome 17q 
The i(17q) abnormality is classified under the 
intermediate-risk category, occurring in about 1% 
MDS cases as the sole abnormality64,65. MDS with 
i(17q) has specific phenotypic features such as 
profound anemia increased peripheral blood 
leukocytes showing neutrophils with pseudo-
Pelger–Huët anomaly and hyperplastic bone 
marrow with micromegakaryocytic predominance64, 

65. The TP53 gene is located on 17p13.1 and while 
one of the alleles is lost with the i(17q) 
abnormality,65 the absence of mutations in the 
remaining allele suggests that the loss of other 
genes on chromosome 17p may play a role in the 
unique pathogenesis of i(17q) hematologic 
malignancies64. To further corroborate this 
hypothesis, Fioretos et al.66 reported no 
associations between the i(17q) and TP53 
mutations. Recently, myeloid disorders (including 
MDS) with i(17q) have been proposed to be a 
distinct clinical entity, one with aggressive disease 
biology, a higher likelihood of evolution to AML and 
hence poor outcomes64. 
 
Del(20q), del(12p), del(11q) 
Patients with isolated del(12p) and del(20q) are 
grouped under ‘good’-risk category based on the 
cytogenetic classification. The outlook of these 
patients is relatively favorable. Meanwhile, the 
median overall survival was 6-9 years in patients 
with isolated del (12p) and median survival in those 
with isolated del (20q) was 5-6 years3, 8, 67. Patients 
with isolated del(11q) have the most favorable 
prognosis3,5. Although, del(20q) has been 
extensively studied in the context of MDS, none of 
the genes lost in the deleted regions of 20q have 
shown association with the development of MDS, 
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indicating that an in-depth study of this cytogenetic 
abnormalities is warranted to ascertain its role in 
MDS pathogenesis3,5. Loss of the L3MBTL gene 
(which encodes one of the polycomb-group 
proteins) in del(20q) is thought to lead to genomic 
instability, but the L3MBTL gene may not be 
mutated in MDS68. The ASXL1 gene regulates 
epigenetic markers and gene expression by 
interacting with polycomb-complex proteins, 
various transcription activators and repressors. It is 
located at the 20q11 locus, but falls outside the 
deleted regions of the chromosome in del(20q). 2, 69 
ASXL1 is mutated in 10-20% of MDS cases, and 
corresponds with early evolution into AML and 
shorter overall survival.69 
Abnormalities in the ETV6 and CBL genes, located 
on 12p13 and 11q23, respectively, are also reported 
in MDS. ETV6encodes one of the ETS transcription 
factors,70 whereas the product of CBL acts as a 
negative regulator of activated receptor tyrosine 
kinases71. 
 
CONCLUSION 
The broad heterogeneity of MDS highlights a large 
variety of abnormalities that underlie disease 
pathogenesis. Technological advancements have 
enabled us to identify several new biological 
abnormalities in patients with MDS and have 
provided profound insights into MDS 
pathophysiology. In some cases, unique genetic and 
non-genetic aberrations are associated with specific 
cytogenetic abnormalities and are responsive to 
specific forms of therapy. Detailed characterization 
of cytogenetic findings and the genes affected by 
these anomalies will further improve our knowledge 
of the cellular events that lead to MDS. With this 
knowledge, treatment approaches can be 
individualized for each patient, in part based on the 
cytogenetic abnormalities harbored by the MDS 
clone. This will not only yield better response rates 
but will also reduce the toxicities associated with 
other therapies that would be otherwise 
‘suboptimal’ for a specific cytogenetic feature, 
thereby improving patient quality of life and the 
overall prognosis of MDS patients. 
The rarer cytogenetic abnormalities have an unclear 
impact on patient prognosis and are presently 
categorized as intermediate-risk abnormalities and 

most are not included in the current IPSS and the 
revised-IPSS used in the prognostication of patients. 
Emphasis should be placed on the collection of 
additional cases of rare cytogenetic abnormalities 
to expand our knowledge of their impact and allow 
for large studies to take place. 
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