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ABSTRACT 

Thyroid cancer, one of the most widespread malignancies of the endocrine-related system that over the past 
three decades, has a vivid increasing rate. The diagnosis and management of it is dependent on the tumor 
type and stage. Thyroid cancer is divided into four main types, including PTC (papillary thyroid carcinoma), 
FTC (follicular thyroid carcinoma), MTC (medullarly thyroid carcinoma), and ATC (anaplastic thyroid 
carcinoma). The development of the noninvasive diagnostic tool for plasma genotyping, also known as “liquid 

biopsy”, brings a new insight for cancer diagnosis and prognosis. It is mainly containing circulating tumor DNA 
(ctDNA), circulating tumor cell (CTC), exosomes and extrachromosomal circular DNA (ecDNA). Liquid biopsy 
as a new plasma genotyping source brings a new prospective of tumor monitoring and therapy.  It beneficially 
reduces the need of tissue biopsy and made early recognition of relapse as well. This article summarizes its 
components characteristics and their benefit in diagnosis and treatment of thyroid cancer. 
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INTRODUCTION 

Main components of liquid biopsy 
It is needless to say that tissue biopsies have some 
weak points like being invasive and useless in 
understanding metastatic risk, disease progression, 
and treatment effectiveness more than being hard 
for repeating 1. Over the past few decades, the new 
real-time diagnostic tool which is referred as ‘‘liquid 
biopsy’’ has been considered in different type of 
cancer enormously 2-4. In contrary to analysis of 
solid tumors requirement as an invasive 
procedures, blood tests are easy and safe to carry 
out and several samples can be taken over time. 
Actually, the concept of liquid biopsy is composed 
of circulating tumor DNA (ctDNA), circulating tumor 
cells (CTCs) and exosomes (Figure1) which will be 
considered in this review in details.  
 

 
Figure1: Main components of liquid biopsy for genetic and epigenetic 

analysis of thyroid tumors. 

 
Circulating tumor DNA (ctDNA) 
It was in 1940 that for the first time the presence of 
extracellular or cell-free nucleic acids was 
recognized by Mandel and Metais 5, after that the 
rheumatologic literature talked about the existence 
ctDNA in the 19806. Finally, patients with cancer 
were identified to have high levels of cell-free DNA 
(cfDNA) in their plasma like patients with benign 
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diseases including inflammatory bowel disease7. In 
fact, ctDNA are calculated to be presented in blood 
with the length of 160 to 200 base pairs (bp), 
predominantly 166 bp long that are released by 
tumor cells into the bloodstream 8-10. They are a 
genetic representative of tumor which contains the 
exact genetic defects identical to their original 
tumor cells. Interestingly, all molecular variations, 
including point mutations, rearrangements, 
amplifications and gene copy variations are easily 
detectable in plasma's ctDNAs. Cell free DNAs are 
not completely limited to cancer cells for the 
reasons that live cells naturally shedding DNA 
fragments as a part of a homeostatic process 11-14 
On the other hand, cancer patients usually have far 
elevated amount of ctDNA than healthy individuals 
from 0.01% to more than 90%15-17. The logic of this 
variable amount of ctDNA levels in cancer patients 
can be connected to the tumor burden of tumor, 
tumor stage, and efficacy of treatments 17, 18. 
Although the exact mechanism of coming off 
ctDNAs into plasma is not clear completely, some 
suggesting biological processes could be involved, 
including apoptosis and necrosis from dying cells, or 
active release from viable tumor cells 12, 19-22. The 
cfDNA molecular alterations in plasma can reveal 
the status of the human body in a timely manner, 
therefore a study designed to check the background 
somatic mutations in white blood cells (WBC) and 
cfDNA for healthy controls 23. In order to realize the 
pattern and source cfDNA mutations, a panel of 50 
cancer-associated genes was analyzed in both WBC 
and cfDNA groups23. It was shown that most of 
mutations in cfDNA originated from WBC and NPM1 
gene was the most frequently mutant gene in both 
WBC and cfDNA22,23. 
In normal physiologic conditions, apoptotic and 
necrotic cells are removed through phagocytes, so 
ctDNA levels in serum or plasma are quite low, but 
this mechanism is not applicable in tumor cells. It is 
possible that in solid tumors ctDNA release through 
necrosis, autophagy, and other physiologic 16, 24. It 
should be kept in mind that unlike apoptosis, 
necrosis DNA fragments are larger because of 
incomplete and random DNA digestion 25. By far, 
the most interesting spectacle which is brought to 
the science of oncology by ctDNA is called 
horizontal tumor gene transfer phenomenon 

mediated by circulating DNA 2, 26, 27. It explains that 
the impact of some other molecules than DNA in 
tumor formation cannot be ruled out; this is a pure 
fact that ctDNAs are biologically active DNA to raise 
tumor progression26. In fact, ctDNA represents all 
genetic alterations which exist in the tumoral 
genomic DNA, so ctDNA carries genomic and 
epigenomic alterations such as point mutations, loss 
of heterozygosity (LOH),  rearranged genomic 
sequences, microsatellite instability (MSI),  copy 
number variation (CNV) and DNA methylation28-30. 
The results of whole-genome sequencing analysis of 
ctDNA made it clear that copy number variation 
(CNV) and Single-nucleotide polymorphisms (SNPs) 
were noticed in all malignant tumors, but not in 
healthy individuals31. Chan et al.  applied shotgun 
massively parallel sequencing approach in the 
plasma of cancer patients  and successfully 
completed the  whole genome-wide sequencing  of 
CNVs and point mutations32. In 1996, recognition of 
microsatellite instability and loss of heterozygosity 
in ctDNA were first described by Nawroz et al 33. 
DNA methylation as epigenetic change plays crucial 
roles in gene expression regulation and genetic 
alteration34,35. In fact, alteration of DNA methylation 
in the non-coding and promoter region of genes can 
be connected with tumor formation, tumor 
development, and metastatic spread 36, 37. In 1999, 
unusual DNA methylations were noticed in the 
plasma and serum of lung 38, 39, breast 40 and liver 
cancers41. Afterwards, several researches have 
pointed out that ctDNA methylation can be 
considered as an excellent candidate for diagnostic 
and prognostic of cancer 29,42-44. Methylation 
profiling of ctDNA in esophageal cancer patients 
mentioned the highly significant differences in the 
methylation status between ctDNA and equivalent 
tumor tissues45. It should be kept in mind that 
contrary to ctDNA free, RNA molecules are not able 
to survive in the bloodstream. There is an exception 
about cell-free microRNAs that can be noticed in 
plasma or serum of cancer patients46. Indeed, 
detecting RNA molecules could be possible through 
extracellular vesicles such as exosomes (both coding 
and non-coding) in platelets47,48.  More than cfDNA 
and cfRNA there are some extrachromosomal 
circular DNA (ecDNA) which are newly suggested to 
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be presented in blood as a liquid biopsy component 
49.  
Circulating Tumor Cells (CTCs) 
The key reason of cancer-associated death is tumor 
metastasis, unfortunately, the knowledge of this 
procedure has not completed yet. In fact, 
dissemination regularly occurs through the blood, 
so circulating tumor cells (CTCs) as a candidate 
circulating element are interesting50. Circulating 
tumor cells (CTCs) are circulating cells in the 
vasculature or lymphatic’s  which are released from 
primary tumors 51, 52. CTCs have the leading role in 
metastasis which is a key step in the progression of 
tumors in other distant organs and responsible for 
the majority of cancer-related deaths53. Although 
for the first time in 1869 CTCs were observed by 
Thomas Ashworth in the blood of a man with 
metastatic cancer 54, the value of CTCs in modern 
cancer research instigated in the mid  of 1990s by [J. 
Uhr, UT-Dallas, L. Terstappen and P. Liberti, 
Immunicon, Philadelphia].  Afterwards, some cancer 
researches have confirmed that CTCs are derived 
from primary tumor55. Moreover, noteworthy 
efforts in understanding the biological properties of 
CTCs have confirmed their critical role in the 
metastatic spread of carcinoma56.  Up to now, 
several technologies with the essential sensitivity 
and reproducibility to identify CTCs in patients with 
metastatic disease have recently been developed 57-

63. Several studies have shown that the detection of 
CTCs in the peripheral blood of patients with lung 
cancer may have prognostic and predicting efficacy 
in treatment with chemotherapy39, 64-66. 
The ‘seed and soil’ theory which is related to tumor 
invasion and dissemination was launched in 1889 67. 
According to this theory, the basic properties of the 
tumor cells as a seed   and host microenvironment 
as a soil   are main determinants of tumor 
formation sites56,68,69. Without a doubt, the 
hypothesis that some CTCs direct ‘tumor-initiating’ 
process has been supposed because CTCs are 
proficient to seed detached metastatic disease70, 71. 
Some reviews of the metastatic process supposed 
that a reversible epithelial-to-mesenchymal 
transition (EMT) as a crucial step of metastasis is 
completely dependent on CTC 72-74. For diagnosis 
and treatment of breast cancer, CTCs are among 
the most extensively studied ones75,76. There is a 

definite correlation between CTCs and breast 
cancer prognosis and survival76. CTCs have been 
reported to harbor many types of mutations and 
transformations, but, according to the result of a 
systematic review, the clinical implication of CTCs 
molecular characteristics, including Her2, EGFR, 
CEA, CA15-3, CK19, Ki67, PIK3CA, TGF-β and CXCL1 
is more truthful than enumeration of CTCs before 
and during treatment, especially for making the 
best personalized treatment decision76-79. 
Moreover, the change in the number of CTCs in the 
field of treatment strategies and drug development 
could be valuable because patients with a 
remarkable reduction in CTC count after treatment 
usually show better outcomes80-83. 

Exosomes 
It was established that exosomes are cell-derived 
nucleic-acid- and protein-rich nanoparticles which 
are floating in almost all bodily fluids 84, 85. Actually, 
exosomes are small particles with a diameter of 30 - 
100 nm, which is larger than low-density 
lipoproteins (LDL) and much smaller than red blood 
cells. The presence of membranous vesicles outside 
cells in eukaryotic fluids, including blood and urine, 
was acknowledged 50 years ago although at that 
time they were assumed as useless products 
releasing from plasma membrane86, 87. Exosomes 
can exist in various biological fluids, such as plasma 
and urine 88. At first, exosomes were taken in to 
account for having role in the removal of needless 
molecules, after a while some valuable studies 
clarified exosomes’ complex function in tumor 
progression and metastasis88. They are released 
from eukaryotic cells when multi-vesicular bodies 
are fused with the plasma membrane or when they 
can straightly release from the plasma membrane89. 
The potential of exosomes as a cancer diagnostic 
tool has been tested for lung cancer90 and prostate 
cancer91. Interestingly, the advantage of exosomes 
is that they are predominant in the bloodstream 
than CTCs92.  
 
Liquid biopsy detection and characterizations 
methods 
The most important step for liquid biopsy analysis is 
detection and characterization of them in cancer 
patients. Thanks to recent developments in 
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sequencing technologies like the digital polymerase 
chain reaction (dPCR) and next-generation 
sequencing (NGS), now it is easily possible to be 
detected in blood93-95. Nowadays, numerous dPCR 
systems which are droplet-based platforms such as 
QX200 Droplet Digital PCR System (Bio-Rad 
Laboratories), RainDrop Digital PCR System 
(RainDance Technologies) with very high sensitivity 
are industrialized96,97. Moreover, NGS techniques 
can analyze multiple, broad regions of target 
ctDNA94,98,99.Other foremost techniques for   
detection of mutations in specific genomic regions 
of ctDNA are “Ion AmpliSeq Technology (Thermo 
Fisher Scientific)” and “Ion Personal Genome 
Machine (Ion PGM)”100,101. Also, there are some 
target capture-based platforms like Sure Select 
Target Enrichment System (Agilent Technologies) 
which is generally active for targeted sequencing in 
combination with the Illumina paired-end 
sequencing102,103. Interestingly, it was described that 
Personalized Profiling deep Sequencing of 
Rearranged Ends can help to the finding of 
personalized cancer biomarkers 104, 105. 
Techniques for detecting Circulating tumor cells are 
mostly related to the enrichment of CTCs according 
to different properties of CTCs that discriminate 
them from other normal hematopoietic cells. Some 
physical properties are dimensions, density, electric 
charges, and some biological characteristics are cell 
surface molecular markers. Epithelial-marker based 
approaches are the most common practical 
strategies for CTC detection based on epithelial 
markers like Cell Search system which is the only 
FDA-approved platform for CTC detection in clinical 
practice on patients with breast, prostate, and 
colorectal cancers106. Moreover, presentation of a 
mixture of different epithelial markers could be 
helpful to recover additional epithelium-originating 
tumor cells107. Low blood volume as limiting step 
can also be solved by Cell Collector which used 
EpCAM antibody-coated wire to capture CTCs in 
vivo108.  There is also the chip-based platform CTC-
iChip that is an excellent   combination of size-based 
selection and label-dependent enrichment109. 
Additional sized-based approaches are ISET110, 

Screen Cell and Can Patrol111, Parsotix112 and JETTA 
93 systems. 
Over the past few decades, many techniques have 
been developed in order to characterization of 
exosomes from biological fluids. Usually, biophysical 
methods are zoomed on the exosomal size range 
like optical particle tracking which is a method that 
quantify the size of exosomes from 10 nm to 2 µm 
and the velocity of the particles113-119. Additionally, 
some microfluidic-based methodologies could be 
used for exosomal characterization as well120-122. 
More than exosomal size, the exosome specific 
molecular markers like proteins and nucleic acids 
are suitable markers for tumor tracking. As a matter 
of fact, exosomes are released through both normal 
and cancerous cells and include several membrane 
and cytoplasmic proteins. Consequently, its proteins 
like Enolase 1, Heat shock protein 8 (HSPA8), α 
(cytosolic), and class A member 1 (HSP90AA1) can 
be important in clinical diagnostics123, 124. Generally, 
it could be said that exosomal proteins are allocated 
to the different functional categories such as 
tetraspanins (CD9, CD63 and CD81), heat shock 
proteins (HSC70 and HSC90), membrane 
transporters (GTPases) and lipid-bound proteins125. 
Not only exosomes are involved in the pathogenesis 
of cancers but also they are involved in 
neurodegenerative pathologies, including 
Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob 
diseases126. Exosomal microRNAs can be useful for 
diagnostic of several cancer types, for example, 
some miRNAs were distinguished to be particular 
biomarkers of ovarian cancer127,128. In patients with 
lung adenocarcinoma, prostate cancer and 
esophageal squamous cell cancer (ESCC), the levels 
of exosomal miRNAs have increased 129-131.  Also, 
exosomal microRNAs may be possible indicative 
biomarkers for renal fibrosis 132 and heart failure133. 
Several companies have improved different 
technologies for ctDNA, CTCs and detection and 
characterization of exosomes (Table1). 
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Table 1: The liquid biopsy detection and characterization techniques in experimental applications 

Technique Descriptions 

CTC-Chip Capture CTCs by using EpCAM- coated microposts under strict manipulation of velocity and shear force 

CTC-iChip 

The CTC-iChip is composed of two separate microfluidic devices that house three different microfluidic 

components engineered for inline operation: DLD to remove nucleated cells from whole blood by size-based 

deflection by using a specially designed array of posts performed in CTC-iChip1, inertial focusing to line up cells 

to prepare for precise magnetic separation and magnetophoresis for sensitive separation of bead-labeled WBCs 

and unlabeled CTCs, which are performed in CTC-iChip2. PLTs, platelets 

Adna Test 

Adna Test has a combination of antibodies that bind with high specificity and affinity to epitopes or antigens on 

the relevant cancer cells. After magnetic separation, the enriched cells are lysed and purified several time to 

make the relevant tumor cell information available in the form of mRNA. 

EPISPOT( Epithelial Immuno SPOT) 

CTCs are enriched by negative depletion and subsequently cultured on a membrane coated with antibodies that 

capture the secreted proteins. Afterward, the proteins are readily identifiable by immune fluorescence 

microscopy using fluorochrome-labeled secondary antibodies targeting the protein of interest. 

Photoacoustic flowmetry 

Making use of the broadband absorption spectrum of melanin, it has been tested to detect melanoma cells and 

has been combined with nanoparticles targeting cell surface antigens to broaden its applicability in CTC 

detection. 

 

 

Affinity based assays 

Cell Search 

The only FDA-approved technology for CTC detection is based on immune magnetic enrichment. It employs an 

immunomagnetic enrichment step to isolate cells that express the epithelial cells’ adhesion molecule (EpCAM). 

Additionally, to be identified as a CTC, the cellmust contain a nucleus, express cytoplasmic cytokeratin, and 

have a diameter larger than 5μm. This technology has demonstrated the prognostic utility of enumerating and 

monitoringCTC counts in patients with metastatic breast, prostate, and colorectal cancers. Semi-automated 

analyzer enriches CTCs with ferrofluid nanoparticles coated with anti-EpCAM antibodies, then CD45-, CK8+, 

CK18+ and CK19+ cells are counted by a four-color semi-automated fluorescence microscope 

DEPArray (SiliconBiosystems) 

DEPArray™ technology is based on the ability of a non-uniform electric field to exert forces on neutral, 

polarizable particles, such as cells, that are suspended in a liquid. This electrokinetic principle, called 

dielectrophoresis (DEP), can be used to trap cells in DEP “cages” by creating an electric field above a subset of 

electrodes in an array that is in counter phase with the electric field of adjacent electrodes. When a DEP cage is 

moved by a change in the electric field pattern, the trapped cell moves with it. 

MagSweeper 

A magnetic stir bar coated with an antibody to EpCAM. The device can process 9 mL of blood per hour and 

purified cells of interest can be individually selected for subsequent molecular analysis, since the MagSweeper 

technology preserves cell function and does not perturb gene expression. 

Telomescan 

A novel cancer detection platform that measures telomerase activity from viable CTCs captured on a parylene-C 

slot microfilter. Using a constant low pressure delivery system, the new microfilter platform is capable of cell 

capture from 1 mL of whole blood in less than 5 min, achieving 90% capture efficiency. Addition of an 

adenovirus-containing GFP to peripheral blood assay, incubation with cancer cells allows precise enumeration 

and visualization of CTCs. 

 
Thyroid Cancer 
Thyroid cancer is the most common malignancy of 
the endocrine system with the remarkable 
increasing incidence rate over the last three 
decades134,135. According to the National Cancer 
Institute, the incidence of thyroid cancer has gotten 
higher with annually death rate of 0.8% from 2002 
to 2011136-138.  More often than not, thyroid cancer 
is diagnosed through Fine Needle Aspiration (FNA) 
biopsy, and  tissue biopsy is classified  into four 
main types, including 70% to 80% of thyroid 
cancers, papillary thyroid carcinoma (PTC) which is 

the least aggressive type of cancer139-143, follicular 
thyroid carcinoma (FTC), which is more aggressive 
than PTC, medullary thyroid carcinoma (MTC) that 
develops from C cells in the thyroid gland, and is 
more aggressive and less differentiated than 
papillary or follicular cancers and sometimes is 
associated with multiple endocrine neoplasia 2 
(MEN2) and anaplastic thyroid carcinoma (ATC) that 
is the most dangerous form of thyroid cancer with 
the high capacity of metastasis to the adjacent 
lymph nodes and distant sites140,144. Treatment 
options for thyroid cancer, depending on its type 
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and stage, are surgery, radioactive iodine (131I) 
therapy, and molecular-targeted therapies with a 
number of tyrosine kinase inhibitors (TKIs) 145. 
Several genetic and epigenetic alterations could 
have leading role for thyroid cancer like mutations 
leading to the activation of the MAPK and PI3K–AKT 
signaling pathways146, MMP2, caspase3147-149, 
survivin150 and nm23151.  Point mutations of BRAF 
and RAS genes as well as RET/PTC and PAX8/PPARγ 
chromosomal rearrangements were found in 
thyroid cancer 146, 152-154. In addition to genetic 
mutations and rearrangements, there are 
epigenetic modifications which are suggested as 
important factors for thyroid cancer initiation and 
progression149, 155. 
 
Liquid biopsy applications in thyroid cancer 
management 
In order to real time monitoring of thyroid cancer 
from diagnosis to post treatment steps, some 
molecular markers of a noninvasive repeatable 
biopsy is needed, which means liquid biopsy can be 
the best candidate. Choosing plasma or serum as a 
source of cfDNA is challenging because serum 
apparently contains a greater quantity of free 
circulating DNA than plasma156. The underlying 
reason for this is unclear, but important because it 
may have clinical implications in interpreting results 
and using the appropriate resource156. Actually, high 
levels of circulating cell-free DNA (cf-DNA) have 
been established to associate with cancer diagnosis 
and progression. In 2013, it was shown by 
Mariangela Zane that hypermethylation of SLC5A8 
and SLC26A4 genes that are both involved in the 
iodine metabolism and BRAFV600E mutation in ctDNA 
have valuable diagnostic value in thyroid cancer 
patients 149, 157. 
Serum DNA methylation assessment as a novel 
diagnostic tool for thyroid cancer was introduced in 
2006158. In that research, the evaluation of 
methylation status of five genes (CALCA, CDH1, 
TIMP3, DAPK, and RARβ2) been done by real-time 
quantitative methylation-specific PCR. Finally, they 
have confirmed the potential efficacy of serum DNA 
methylation markers as an innovative diagnostic 
marker for both patients with thyroid nodules and 
thyroid cancer recurrence in earlier treated 
patients158. Afterwards, the detectable free 

circulating BRAF in patients with PTC was 
mentioned as a possible determinant of tumor 
clinical implication159. Moreover, it was explained 
that decreasing levels of BRAFV600cfDNA were 
associated with longer tumor treating field 160. A 
higher amount of circulating mutant BRAFV600 in 
plasma was reported as a definite related factor 
with shorter overall survival in patients who were 
under BRAF/MEK inhibitors treatment160. ATC is so 
aggressive that needs rapid diagnosis and 
multimodality management. The University of Texas 
MD Anderson Cancer Center, between August 2015 
and April 2016, run a research in which next-
generation sequencing was used in twenty-three 
patients with ATC161. Based on those data,   both 
tumor-based and cfDNA analysis usage in the 
setting of clinical-trial development and application 
was suggested161. Another aggressive thyroid tumor 
is medullary thyroid carcinoma   which is triggered 
by activating mutations of the RET proto-oncogene 
receptor (RETM918T mutation) 162, 163. A cohort study 
was done by Caitlin Evers on 145 plasma samples 
from 98 patients (45 RETM918T tumor positive, 25 
RETM918T tumor negative and 28 unidentified tumor 
mutation condition) by using Amplification 
Refractory Mutation System PCR (ARMS) and the 
Bio-Rad QX200™ Droplet Digital™ PCR system 
(ddPCR) (Bio-Rad Laboratories, Hercules, CA). Both 
ARMS and ddPCR are recommended for plasma 
DNA analysis in the way of mutation detection 
during disease progression162. For thyroid cancer, 
personalized medicine approach, interestingly the 
result of a research had revealed that Vemurafenib 
have its anti-tumor activity in patients with 
progressive, circulating BRAFV600E   mutation positive 
refractory to radioactive iodine that had not been 
treated with a multi-kinase inhibitor drugs 164. 
Not only circulating DNAs can be valuable source for 
real-time thyroid tumor tracking but also circulating 
RNAs have this potential. So, there are some studies 
which are focused on circulating RNAs in plasma of 
cancer patients. For example, BRAFV600E as an 
ordinary mutation of PTC is associated with 
insistent features of disease165. For evaluation of 
the viability and accuracy of a novel RNA-based 
blood assay to discriminate individuals with a high-
risk tumor mutation in patients with PTC, circulating 
BRAFV600Elevels were compared with surgical 

http://www.sciencedirect.com/science/article/pii/S0753332213000838
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pathologic DNA-based tissue BRAF mutation assays 
165. The correlation of the RNA-based blood assay 
and tissue BRAF status was reported, so this RNA-
based blood assay was described as an excellent 
biomarker for prognosis, surveillance, clinical 
decision making compared to BRAF-targeted 
therapies165. Additionally, exploring the plasma 
Long Non-Coding RNA (lncRNAs) for the finding of 
non-131I-avid lung metastases of PTC has been done 
166. It was shown that two lncRNAs 
(ENST00000462717 and ENST00000415582) were 
up regulated and two (TCONS_00024700 and 
NR_028494) were down regulated in the non-131I-
avid lung metastases of PTC166.  
An interesting case report had illustrated that 
circulating epithelial cells (CECs) enumeration 
simplifies the identification and follow-up of a 
patient with early stage PTCs167. A panel of CEC 
quantification with serum thyroglobulin testing 
could be a valuable diagnostic marker for 
monitoring of thyroid cancer patients167. Some data 
make it evident that collective analysis of serum 
thyroglobulin with CECs, which are EpCAM positive, 
is completely applicable for patients at disease-free 
status and the patients with distant metastasis 
distinguishing 168. Therefore, CEC testing thereby 
can supplement the current standard methods for 
monitoring disease status of PTC167. High-resolution 
imaging for the detection and characterization of 
CTCs was used in patients with esophageal, 
hepatocellular, thyroid and ovarian cancers by Barry 
M. Dent in January 2016, which resulted in more 
numbers of CTC detection in the blood of the cancer 
patient with known metastatic disease169. In detail, 
CTCs were detected in 3 of 6 thyroid cancer patients 
and most of these tumor cells expressed 
cytokeratin, thyroglobulin and Sodium: Iodide 
Symporter (NIS) 169. The presence of more than or 
equal to five CTCs per 7.5 ml of blood in patients 
with metastatic modularlyTC (metMTC) is 
associated with inferior overall survival 170. 
Additional research had shown that in metastatic 
PTC patients CTCs were characterized by 
aneuploidy, with higher levels of CTCs in metastatic 
PTC in comparison with controls171. Interestingly, 
the designed probes of lung cancer were suitable 
for detecting genetic aberrations in metastatic PTC 
patients’ CTCs that logically could explain the similar 

lineage-specific chromosomal changes in thyroid 
and lung malignant progenitor cells170.  
Exosomes, 30–120 nm endocytic membrane-
derived vesicles, are important for inter-and intra -
cellular communication as well as protein and RNA 
delivery. Because of their role, they have a variety 
of proteins, nucleic acids, and lipids172, 173. It has 
been proved frequently that molecular components 
of exosomes, including exosomal proteins and 
microRNAs (miRNAs) could be suitable non-invasive 
biomarkers for clinical diagnosis of tumors 174-179. 
Very recently, a study revealed that PTC is 
connected with specific changes in exosomal miRNA 
profiles180. Actually, miRNA-31 was found to be 
over-represented in the plasma exosomes of PTC 
compared to benign tumors, while miRNA-21 was 
helpful for FTC benign tumors discrimination180. 
MiRNA-21 and miRNA-181a-5p were both 
expressed equally in the exosomes of patients with 
PTC and FTC; therefore, their assessment will be 
beneficial to decide between PTC and FTC with 
100 % sensitivity and 77 % specificity180. Moreover, 
tumor levels of miR-222 and miR-146b were 
coupled to the PTC recurrence, whereas miR-222 
and miR-146b levels in the circulation were linked 
to the presence of PTC181. Some studies were 
evidence for exosomes and their cancer-derived 
miRNAs, which regulated the proliferation of 
recipient cells. For example, PTC-derived exosomes 
contain miR-146b and miR-222, which alter 
proliferation of other cells in a malignant behavior 
182. 
 
Conclusion  
   Taking everything into consideration now is the 
exact time to be focused on liquid biopsy for thyroid 
cancer management. It is really important that 
liquid biopsy will improve the thyroid cancer 
diagnostic and prognostic strategies in the 
minimally non-invasive way. 
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