International Journal of Hematology-Oncology and Stem Cell Research 2018. 12(2):153-164.

Role of Hippo Pathway Effector Tafazzin Protein in Maintaining Stemness of Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC)
Madhumala Gopinath, Rosa Di Liddo, Francesco Marotta, Ramachandran Murugesan, Antara Banerjee, Sushmitha Sriramulu, Ganesan Jothimani, Vimala Devi Subramaniam, Srinivasan Narasimhan, Swarna Priya K, Xiao-Feng Sun, Surajit Pathak


Tafazzin (TAZ) protein has been upregulated in various types of human cancers, although the basis for elevation is uncertain, it has been made definite that the effect of mutation in the hippo pathway, particularly when it is switched off, considerably activates tafazzin transcriptionally and thus this results in tissue or tumor overgrowth. Recent perceptions into the activity of tafazzin, have ascribed to it, a role as stem cell factor in mouse mesenchymal and as well as in neural stem cells. Being a downstream molecule in Hippo signalling, phosphorylation or dephosphorylation of tafazzin gene regulates its transcriptional activity and the stemness of mesenchymal stem cells. Commonly, extracellular matrix controls the stem cell fate commitment and perhaps tafazzin controls stemness through altering the extra cellular matrix. Extracellular matrix is generally made up of prime proteoglycans and the fate stabilization of the resulting lineages is surveilled by engineering these glycans. Tafazzin degradation and addition of proteoglycans affect physical attributes of the extracellular matrix that drives cell differentiation into various lineages. Thus, tafazzin along with major glycans present in the extracellular matrix is involved in imparting stemness. However, there are incoherent molecular events, wherein both tafazzin and the extracellular matrix components, together either activate or inhibit differentiation of stem cells. This review discusses about the role of tafazzin oncoprotein as a stemness factor.


Tafazzin, Stemness, Extracellular matrix, Proteoglycan, Oncoprotein

Full Text:



Chan SW, Lim CJ, Guo K, et al. A role for TAZ in migration, invasion and tumorigenesis of breast cancer cells. Cancer res. 2008; 68(8): 2592-8.

Zhou Z, Hao Y, Liu N, et al. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene. 2011; (18): 2181-6.

Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010; 19(4): 491-505.

Wang L, Shi S, Guo Z, et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PloS One. 2013; 8(6): e65539.

Cordenonsi M, Zanconato F, Azzolin L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011; 147(4): 759-72.

Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001; 414(6859): 105-11.

Yuen HF, McCrudden CM, Huang YH, et al. TAZ expression as a prognostic indicator in colorectal cancer. PloS One. 2013; 8(1): e54211.

Tanas MR, Sboner A, Oliveira AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med. 2011; 3(98): 98ra82.

Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012; 22(5): 571-584.

Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014; 141(8): 1614-26.

Avruch J, Zhou D, Fitamant J, et al. Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol. 2012; 23(7): 770-84.

Zhao B, Li L, Wang L, et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012; 26(1): 54-68.

Giampietro C, Disanza A, Bravi L, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signalling. J Cell Biol. 2015; 211(6): 1177-92.

Gumbiner BM, Kim NG. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014; 127(4): 709-17.

Zhao B, Li L, Lei Q, Guan KL. The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev; 2010. 24(9): 862-74.

Guan KL, Yu F, Ding S. The J. David Gladstone Institutes, The Regents of the University of California, assignee. Inhibitors of hippo-YAP signaling pathway. 2013; United States patent application US 14/406, 749.

Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS letters; 2014. 588(16): 2663-2670.

Wang K, Degerny C, Xu M, Yang XJ, Yorkie. A conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem Cell Biol; 2008. 87(1): 77-91.

Zhao Y, Yang X. WWTR1 (WW domain containing transcription regulator 1). Atlas Genetics Cytogenet Oncol Haematol; 2014. 18(11): 849.

Santucci M, Vignudelli T, Ferrari S, Mor M, Scalvini L, Bolognesi ML, Uliassi E, Costi MP. The Hippo Pathway and YAP/TAZ–TEAD Protein–Protein Interaction as Targets for Regenerative Medicine and Cancer Treatment: Miniperspective. J med chem; 2015. 58(12): 4857-4873.

Nagashima S, Bao Y, Hata Y. The Hippo pathway as drug targets in cancer therapy and regenerative medicine. Current drug targets; 2016.

Fuchs E, Chen T. A matter of life and death: self‐renewal in stem cells. EMBO reports; 2013. 14(1): 39-48.

Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells; 2001. 19(3): 180-192.

Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cellular Biochem; 2006. 97(4): 744-754.

Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, Oner FC, De Bruijn JD, Van Blitterswijk CA. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng; 2002. 8(6): 911-920.

Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie; 2005. 87(1): 125-128.

Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int; 2006. 30(9): 681-687.

Yu SJ, Soncini M, Kaneko Y, Hess DC, Parolini O, Borlongan CV. Amnion: a potent graft source for cell therapy in stroke. Cell Transplant; 2009. 18(2): 111-118.

Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood; 2004. 103(5): 1669-1675.

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells; 2004. 22(7): 1330-1337.

Banerjee A, Bizzaro D, Burra P, Di Liddo R, Pathak S, Arcidiacono D, Cappon A, Bo P, Conconi MT, Crescenzi M, Pinna CMA. Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res & Ther; 2015. 6(1): p.1.

Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev and Reports; 2013. 9(2): 226-240.

Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M. Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev; 2010. 19(1): 117-130.

Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, Sundaraj S, Majumdar AS. Higher propensity of Wharton's jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol Int; 2013. 37(5): 507-515.

Williams AR, Hare JM. Mesenchymal stem cells biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Res; 2011. 109(8): 923-940.

O'Donoghue K, Fisk NM. Fetal stem cells. Best Practice & Research Clin Obst & Gynaecol; 2004. 18(6): 853-875.

Roobrouck VD, Ulloa-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res; 2008. 314(9): 1937-1944.

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Dougla R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science; 1999. 284(5411): 143-147.

Kia NA, Bahrami AR, Ebrahimi M. Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci; 2011. 44(3): 178–185.

Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, Santos F, Henriques A, Grãos M, Cardoso CM, Martinho A. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther; 2013. 4(5): p.1.

Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol; 2009. 217(2): 318-324. 2016.

Covas DT, Siufi JLC, Silva ARL, Orellana MD. Isolation and culture of umbilical vein mesenchymal stem cells. Brazilian J Med Biol Res; 2003. 36(9): 1179-1183.

Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC‐like cells from umbilical cord. Stem Cells; 2003. 21(1): 105-110.

Ramkisoensing AA, Pijnappels DA, Askar SF, Passier R, Swildens J, Goumans MJ, Schutte CI, de Vries AA, Scherjon S, Mummery CL, Schalij MJ. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS One; 2011. 6(9): p.e24164.

Xin Y, Li N, Huang Y, Cui W, Liu S, Xu X, Zhang Z. Primary culture and multiple differentiation potency of mesenchymal stem cells from human umbilical cord. Chinese J Cellular Mol Immunol; 2013. 29(10): 1087-1093.

Lian J, Lv S, Liu C, Liu Y, Wang S, Guo X, Nan F, Yu H, He X, Sun G, Ma X. Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells. Stem Cells Int; 2016.

Semenov OV, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch AH, Malek A. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obst & Gynaecol; 2010. 202(2): 193-e1.

Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Dev; 1990. 110(4): 1001-1020.

Lajtha LG. Stem cell concepts. Differentiation. 1979; 14(1‐3): 23-33.

Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev; 2014. 94(4): 1287-1312.

Raghunathan VK, Dreier B, Morgan JT, Tuyen BC, Rose BW, Reilly CM, Russell P. Murphy CJ. Involvement of YAP, TAZ and HSP90 in Contact Guidance and Intercellular Junction Formation in Corneal Epithelial Cells. PloS one; 2014. 9(10): p. e109811.

Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends in Cell Biol; 2012. 22(7): 339-346.

Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomat; 2016. 103: 314-323.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell; 2008. 133(4): 704-715.

Thiery JP, Acloque H, Huang RY, Niet MA. Epithelial-mesenchymal transitions in development and disease. Cell; 2009. 139(5): 871-890.

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev; 2007. 21(21): 2747-2761.

Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mat; 2016.

Xiao H, Jiang N, Zhou B, Liu Q, Du C. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci; 2015. 106(2): 151-9.

He M, Zhou Z, Shah AA, Hong Y, Chen Q, Wan Y. New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div; 2016. 11(1): p.1.

Liu CY, Lv X, Li T, Xu Y, Zhou X, Zhao S, Xiong Y, Lei QY, Guan KL. PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ. J Biol Chem; 2011. 286(7): 5558-5566.

Dische DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science; 2009. 324(5935): 1673-1677.

Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol; 2009. 10(1): 63-73.

Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching. Current opinion in Cell Biol; 2009. 21(6): 864-870.

Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol; 2009. 10(1): 34-43.

Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov; 2014. 13(1): 63-79.

Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev; 2010. 24(11): 1106-1118.

Folkman J, Moscona A. Role of cell shape in growth control. Nature; 1978. 273(5661): 345-9.

Spiegelman BM, Ginty CA. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell; 1983. 35(3): 657-666.

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N. Role of YAP/TAZ in mechanotransduction. Nature; 2011. 474(7350): 179-183.

Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science; 1997. 276(5317): 1425-1428.

Wrighton KH. Mechanotransduction: YAP and TAZ feel the force. Nat Rev Mol Cell Biol; 2011. 12(7): 404-405.

Piersma B, Bank RA, Boersema M. Signalling in fibrosis: TGF-β, wNT, and YAP/TAZ converge. Front Med; 2015. 2.

Beyer TA, Weiss A, Khomchuk Y, Huang K. Ogunjimi AA, Varelas X, Wrana JL. Switch enhancers interpret TGF-β and Hippo signalling to control cell fate in human embryonic stem cells. Cell reports; 2013. 5(6): 1611-1624.

Sansores‐Garcia L, Bossuyt W, Wada KI, Yonemura S, Tao C, Sasaki H, Halder G. Modulating F‐actin organization induces organ growth by affecting the Hippo pathway. The EMBO Journal; 2011. 30(12): 2325-2335.

Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Dev; 2011. 138(18): 3907-3914.

Gallagher JT, Lyon M. Heparan sulfate: molecular structure and interactions with growth factors and morphogens. Proteoglycans. New York, NY: Marcel Dekker, Inc. 2000. 27-60.

Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Ann rev Biochem; 1998. 67(1): 609-652.

Gallagher J. Fell‐Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol; 2015. 96(4): 203-31.

Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell; 2005. 122(3): 421-434.

Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biol; 2007. 17(23): 2054-2060.

Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res; 2013. 19(18): 4925-4930.

Rui J, Dadsetan M, Runge MB, Spinner RJ, Yaszemski MJ, Windebank AJ, Wang H. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomat; 2012. 8(2): 511-8.

Lovicu FJ, McAvoy JW. FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling. Dev; 2001. 128(24): 5075-84.

Kraushaar DC, Dalton S, Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem; 2013. 394(6): 741-751.

Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dynam; 2010. 239(1): 184-90.

Shi Y, Massagué J. Mechanisms of TGF-β signalling from cell membrane to the nucleus. Cell; 2003. 113(6): 685-700.

Varga AC, Wrana JL. The disparate role of BMP in stem cell biology. Oncogene; 2005. 24(37): 5713-5721.

Zhang J, Li L. BMP signalling and stem cell regulation. Dev Biol; 2005. 284(1): 1-11.

Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthopaedic Res; 2007. 25(5): 665-677.

Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis; 2014. 1(1): 87-105.

Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev; 1996. 10(13): 1580-1594.

Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev; 2001. 15(10): 1229-1241.

Mahoney WM, Jeong-Ho HONG, Yaffe MB, Farrance IK. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J; 2005. 388(1): 217-225.

Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY, Guan KL. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem; 2009. 284(20): 13355-13362.

Attisano L, Wrana JL. Signal transduction by the TGF-β superfamily. Science; 2002. 296(5573): 1646-1647.

Chen J, Wang Y, Chen C, Lian C, Zhou T, Gao B, Wu Z, Xu C. Exogenous Heparan Sulfate Enhances the TGF-β3-Induced Chondrogenesis in Human Mesenchymal Stem Cells by Activating TGF-β/Smad signalling. Stem cells Int; 2016.

Levings DC, Arashiro T, Nakato H. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells. Mol Biol Cell; 2016. 27(6): 888-896.

Men T, Piao SH, Teng CB. Regulation of differentiation of mesenchymal stem cells by the Hippo pathway effectors TAZ/YAP. 2013. 35(11): 1283-1290.

Araujo APB, Ribeiro MEO, Ricci R, Torquato RJ, Toma L, Porcionatto MA. Glial cells modulate heparan sulfate proteoglycan (HSPG) expression by neuronal precursors during early postnatal cerebellar development. Int J Dev Neurosci; 2010. 28(7): 611-620.

Lodge EJ, Russell JP, Patist AL, Francis-West P, Andoniadou CL. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development. Front Physiol; 2016. 7.

Okazaki K, Sandell LJ. Extracellular matrix gene regulation. Clin Orthopaedics and related Res; 2004. 427: S123-S128.

Han D, Byun SH, Park S, Kim J, Kim I, Ha S, Kwon M, Yoon K. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Biochem Biophys Res Comm; 2015. 458(1): 110-116.

Oikari LE, Okolicsanyi RK, Qin A, Yu C, Griffiths LR, Haupt LM. Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination. Stem Cell Res; 2016. 16(1): 92-104.

Tamm C, Böwer N, Annerén C. Regulation of mouse embryonic stem cell self-renewal by a Yes–YAP–TEAD2 signaling pathway downstream of LIF. J Cell Sci; 2011. 124(7): 1136-44.

Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet; 2008. 40(5): 499-507.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell; 2006. 126(4): 663-76.

Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Dev; 2005. 132(5): 885-96.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.