Genetic Engineering in Hematopoietic Stem Cells for β-Hemoglobinopathies Treatment: Advances, Challenges, and Clinical Translation
Abstract
β-hemoglobinopathies rank among the most prevalent inherited blood disorders globally. Traditional management strategies are primarily palliative and often associated with significant challenges, including iron overload and limited long-term efficacy. Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative option for transfusion-dependent patients, but its broader applicability is constrained by factors that limit its use. Utilizing viral vectors and gene-editing tools, particularly CRISPR-Cas9 technology, researchers have developed therapies that target the root causes of these disorders. These innovative approaches have demonstrated substantial therapeutic potential, accompanied by favorable safety profiles, in clinical settings. Since the initial investigations, the genome editing tool has rapidly advanced for genetic abnormalities, particularly monogenic blood diseases, including β-hemoglobinopathies. This method suggests an approach with lower concerns in viral gene integration and insertional mutagenesis issues. This review comprehensively surveys the therapeutic strategies for β-thalassemia and sickle cell disease (SCD) currently in preclinical and clinical development, with a focus on the evolving treatment paradigm. Looking forward, critical research priorities include optimizing the efficiency and specificity of gene-editing platforms and pioneering novel delivery systems to guarantee both therapeutic efficacy and clinical safety.
2. Locatelli F, Cavazzana M, Frangoul H, et al. Autologous gene therapy for hemoglobinopathies: From bench to patient’s bedside. Mol Ther. 2024;32(5):1202-18.
3. Cavazzana M, Miccio A, Andre-Schmutz I, et al. Gene replacement therapy for hemoglobinopathies: clinical benefit & challenges for widespread utilization. Cell Gene Ther Insights. 2018 ; 4(7):653-664.
4. Flint J, Harding RM, Boyce AJ, et al. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol . 1998;11(1):1-51.
5. Lippi G, Mattiuzzi C. Updated worldwide epidemiology of inherited erythrocyte disorders. Acta Haematol. 2020;143(3):196-203.
6. Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nat Rev Dis Primers. 2018:4:18010.
7. Sakuno G, Kato JM, Carricondo PC. Hemoglobinopathies and Coagulopathies. Diseases of the Retina and Vitreous: Clinical & Surgical Practice and Innovations: Springer; 2024. p. 1-14.
8. Thomson AM, McHugh TA, Oron AP, et al. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Haematology. 2023;10(8):e585-e99.
9. Ochocinski D, Dalal M, Black LV, et al. Life-threatening infectious complications in sickle cell disease: a concise narrative review. Front Pediatr. 2020;8:38.
10. Segura EER, Ayoub PG, Hart KL, et al. Gene therapy for β-hemoglobinopathies: From discovery to clinical trials. Viruses. 2023;15(3):713.
11. Stamatoyannopoulos G. Control of globin gene expression during development and erythroid differentiation. Exp Hematol. 2005;33(3):259-71.
12. Wang L, Li L, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Res. 2020;30(3):276-8.
13. Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells. 2012;34(1):1-5.
14. Noordermeer D, De Wit E, Klous P, et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol. 2011;13(8):944-51.
15. Bauer DE, Orkin SH. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr. 2011;23(1):1-8.
16. Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood. 2024;144(8):845-52.
17. Donze D, Townes TM, Bieker JJ. Role of Erythroid Kruppel-like Factor in Human γ-to β-Globin Gene Switching. J Biol Chem. 1995;270(4):1955-9.
18. Perrine SP, Mankidy R, Boosalis MS, et al. Erythroid Kruppel‐like factor (EKLF) is recruited to the γ‐globin gene promoter as a co‐activator and is required for γ‐globin gene induction by short‐chain fatty acid derivatives. Eur J Haematol. 2009;82(6):466-76.
19. Parkins AC, Sharpe AH, Orkin SH. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375(6529):318-22.
20. Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801-5.
21. Deng W, Lee J, Wang H, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 2012;149(6):1233-44.
22. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood. 2022;139(16):2450-9.
23. Vakoc CR, Letting DL, Gheldof N, et al. Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005;17(3):453-62.
24. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373(6513):432-4.
25. Porcher C, Chagraoui H, Kristiansen MS. SCL/TAL1: a multifaceted regulator from blood development to disease. Blood. 2017;129(15):2051-60.
26. Yun WJ, Kim YW, Kang Y, et al. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res. 2014;42(7):4283-93.
27. Krivega I, Dean A. LDB1-mediated enhancer looping can be established independent of mediator and cohesin. Nucleic Acids Res. 2017;45(14):8255-68.
28. Myers G, Sun Y, Wang Y, et al. Roles of nuclear orphan receptors tr2 and tr4 during hematopoiesis. Genes (Basel). 2024;15(5):563.
29. Fugazza C, Barbarani G, Elangovan S, et al. The Coup-TFII orphan nuclear receptor is an activator of the γ-globin gene. Haematologica. 2020;106(2):474-482.
30. Liu N, Xu S, Yao Q, et al. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat Genet. 2021;53(4):511-20.
31. Zheng G, Orkin SH. Transcriptional repressor BCL11A in erythroid cells. Adv Exp Med Biol . 2024:1459:199-215.
32. Martyn GE, Doerfler PA, Yao Y, et al. Hydroxyurea reduces the levels of the fetal globin gene repressors ZBTB7A/LRF and BCL11A in erythroid cells in vitro. J Sick Cell Dis. 2024;1(1):yoae008.
33. Lee YT, de Vasconcellos JF, Yuan J, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood. 2013;122(6):1034-41.
34. Cox G, Kobayashi M, Rudd BD, et al. Regulation of HSC development and function by Lin28b. Front Cell Dev Biol. 2025;13:1555877.
35. Cha HJ. Erythropoiesis: Insights from a genomic perspective. Exp Mol Med. 2024;56(10):2099-2104.
36. El-Beshlawy A, Dewedar H, Hindawi S, et al. Management of transfusion-dependent β-thalassemia (TDT): Expert insights and practical overview from the Middle East. Blood Rev. 2024;63:101138.
37. Costa E, Cappellini MD, Rivella S, et al. Emergent treatments for β-thalassemia and orphan drug legislations. Drug Discov Today. 2022;27(11):103342.
38. Preza GC, Ruchala P, Pinon R, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Invest. 2011;121(12):4880-8.
39. Schmidt PJ, Racie T, Westerman M, et al. Combination therapy with a T mprss6 RNA i‐therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of β‐thalassemia intermedia. Am J Hematol. 2015;90(4):310-3.
40. Ganz T, Nemeth E, Rivella S, et al. TMPRSS6 as a therapeutic target for disorders of erythropoiesis and iron homeostasis. Adv Ther. 2023;40(4):1317-33.
41. Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat Med. 2010;16(2):177-82.
42. Casu C, Pettinato M, Liu A, et al. Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood. 2020;136(17):1968-79.
43. Porter J, Taher A, Viprakasit V, et al. Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis in β-thalassemia: current evidence and future clinical development. Expert Rev Hematol. 2021;14(7):633-44.
44. Cappellini MD, Viprakasit V, Taher AT, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219-31.
45. Martinez PA, Li R, Ramanathan HN, et al. Smad2/3‐pathway ligand trap luspatercept enhances erythroid differentiation in murine β‐thalassaemia by increasing GATA‐1 availability. J Cell Mol Med. 2020;24(11):6162-77.
46. Lee S-E. Novel therapeutics for myelofibrosis. Blood Res. 2023;58(S1):S13-S9.
47. Matte A, Federti E, Kung C, et al. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model. J Clin Invest. 2021;131(10): e144206.
48. Kuo KH, Layton D, Lal A, et al. Proof of concept for the oral pyruvate kinase activator mitapivat in adults with non–transfusion-dependent thalassemia: Interim results from an ongoing, phase 2, open-label, multicenter study. Blood. 2020;136(suppl_1).
49. Mettananda S, Fisher CA, Sloane-Stanley JA, et al. Selective silencing of a-globin by the histone demethylase inhibitor IOX1: A potentially new pathway for treatment of ß-thalassemia. Haematologica. 2017;102(3):e80-e84.
50. Taher AT, Musallam KM, Cappellini MD. Guidelines for the Management of Non-Transfusion-Dependent β-Thalassaemia [Internet].3rd edition. Nicosia (Cyprus): Thalassaemia International Federation; 2023.
51. Fucharoen S, Inati A, Siritanaratku N, et al. A randomized phase I/II trial of HQK‐1001, an oral fetal globin gene inducer, in β‐thalassaemia intermedia and H b E/β‐thalassaemia. Br J Haematol. 2013;161(4):587-93.
52. Reid ME, El Beshlawy A, Inati A, et al. A double‐blind, placebo‐controlled phase II study of the efficacy and safety of 2, 2‐dimethylbutyrate (HQK‐1001), an oral fetal globin inducer, in sickle cell disease. Am J Hematol. 2014;89(7):709-13.
53. Filì C, Candoni A, Zannier ME, et al. Efficacy and toxicity of Decitabine in patients with acute myeloid leukemia (AML): A multicenter real-world experience. Leuk Res. 2019;76:33-8.
54. Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 2003; 35(3):S7-S14.
55. Dai Y, Sangerman J, Luo HY, et al. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms. Blood Cells Mol Dis. 2016;56(1):62-9.
56. Algeri M , Lodi M , Locatelli F. Hematopoietic stem cell transplantation in thalassemia. Hematol Oncol Clin North Am. 2023 Apr;37(2):413-432.
57. Porter J. Beyond transfusion therapy: new therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. Hematology Am Soc Hematol Educ Program. 2018;2018(1):361-370.
58. McManus M, Frangoul H, Steinberg MH. Crispr-based gene therapy for the induction of fetal hemoglobin in sickle cell disease. Expert Rev Hematol. 2024;17(12):957-66.
59. Soriano P, Cone RD, Mulligan RC, et al. Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses. Science. 1986;234(4782):1409-13.
60. Sadelain M, Wang C, Antoniou M, et al. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci U S A. 1995;92(15):6728-32.
61. Miyoshi H, Blömer U, Takahashi M, et al. Development of a self-inactivating lentivirus vector. J Virol. 1998;72(10):8150-7.
62. Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001;294(5550):2368-71.
63. Marktel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat Med. 2019;25(2):234-41.
64. McCune SL, Reilly MP, Chomo MJ, et al. Recombinant human hemoglobins designed for gene therapy of sickle cell disease. Proc Natl Acad Sci U S A. 1994;91(21):9852-6.
65. Levasseur DN, Ryan TM, Pawlik KM, et al. Correction of a mouse model of sickle cell disease: lentiviral/antisickling β-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 2003;102(13):4312-9.
66. Urbinati F, Campo Fernandez B, Masiuk KE, et al. Gene therapy for sickle cell disease: a lentiviral vector comparison study. Hum Gene Ther. 2018;29(10):1153-1166.
67. Negre O, Bartholomae C, Beuzard Y, et al. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther. 2015;15(1):64-81.
68. Biffi A. Gene therapy as a curative option for β-thalassemia. N Engl J Med. 2018;378(16):1551-1552.
69. Harrison C. First gene therapy for β-thalassemia approved. Nat Biotechnol. 2019;37(10):1102-1103.
70. Ay C, Reinisch A. Gene therapy: principles, challenges and use in clinical practice. Wien Klin Wochenschr. 2025;137(9-10):261-271.
71. Kiem HP, Arumugam P, Christopher B, et al. Safety Of a Gamma Globin Expressing Lentivirus Vector In a Non-Human Primate Model For Gene Therapy Of Sickle Cell Disease. Blood. 2013;122(21):2896.
72. Papanikolaou E, Georgomanoli M, Stamateris E, et al. The new self-inactivating lentiviral vector for thalassemia gene therapy combining two HPFH activating elements corrects human thalassemic hematopoietic stem cells. Hum Gene Ther. 2012;23(1):15-31.
73. Drakopoulou E, Georgomanoli M, Lederer CW, et al. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34+ Cells from Sickle Cell Disease Patients. Viruses. 2022;14(12):2716.
74. Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science. 2011;334(6058):993-6.
75. Guda S, Brendel C, Renella R, et al. miRNA-embedded shRNAs for lineage-specific BCL11A knockdown and hemoglobin F induction. Mol Ther. 2015;23(9):1465-74.
76. Brendel C, Guda S, Renella R, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest. 2016 3;126(10):3868-3878.
77. Brendel C, Negre O, Rothe M, et al. Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for sickle cell gene therapy. Mol Ther Methods Clin Dev. 2020:17:589-600.
78. Liu B, Brendel C, Vinjamur DS, et al. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Mol Ther. 2022;30(8):2693-2708.
79. Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379(6629):eadd8643.
80. Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636-46.
81. Modares Sadeghi M, Shariati L, Hejazi Z, et al. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. J Cell Biochem. 2018;119(3):2512-2519.
82. Smith AR, Schiller GJ, Vercellotti GM, et al. Preliminary results of a phase 1/2 clinical study of zinc finger nuclease-mediated editing of BCL11A in autologous hematopoietic stem cells for transfusion-dependent beta thalassemia. Blood. 2019;134(Suppl 1):3544.
83. Walters MC, Smith AR, Schiller GJ, et al. Updated results of a phase 1/2 clinical study of zinc finger nuclease-mediated editing of BCL11A in autologous hematopoietic stem cells for transfusion-dependent beta thalassemia. Blood. 2021;138(Suppl 1):3974.
84. Van der Oost J, Patinios C. The genome editing revolution. Trends Biotechnol. 2023;41(3):396-409.
85. Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30(5):390-2.
86. Xu P, Tong Y, Liu Xz, et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C> T) mutation in β-thalassemia-derived iPSCs. Sci Rep. 2015;5:12065.
87. Fang Y, Cheng Y, Lu D, et al. Treatment of β654‐thalassaemia by TALEN s in a mouse model. Cell Prolif. 2018;51(6):e12491.
88. Bak RO, Dever DP, Porteus MH. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc. 2018;13(2):358-76.
89. Laurent M, Geoffroy M, Pavani G, et al. CRISPR-based gene therapies: from preclinical to clinical treatments. Cells. 2024;13(10):800.
90. Hu J, Zhong Y, Xu P, et al. β-Thalassemia gene editing therapy: Advancements and difficulties. Medicine (Baltimore). 2024;103(18):e38036.
91. Brunner E, Yagi R, Debrunner M, et al. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life Sci Alliance. 2019 Jun 13;2(3):e201800267.
92. Hardouin G, Magrin E, Corsia A, et al. Sickle cell disease: from genetics to curative approaches. Annu Rev Genomics Hum Genet. 2023:24:255-275.
93. Alayoubi AM, Khawaji ZY, Mohammed MA, et al. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol. 2024;103(6):1805-1817.
94. Wienert B, Martyn GE, Funnell AP, et al. Wake-up sleepy gene: reactivating fetal globin for β-hemoglobinopathies. Trends Genet. 2018;34(12):927-940.
95. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(23):e91.
96. Testa U, Leone G, Cappellini MD. Therapeutic gene editing for hemoglobinopathies. Mediterr J Hematol Infect Dis. 2024;16(1):e2024068.
97. Frangoul H, Hanna R, McKinney C, et al. AsCas12a gene editing of HBG1/2 promoters with Edit-301 results in early and sustained normalization of Hemoglobin and increased fetal hemoglobin in patients with severe sickle cell disease and transfusion-dependent Beta-thalassemia. Transpl Cell Ther. 2024;30(2S):S230-S9.
98. Magis W, DeWitt MA, Wyman SK, et al. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation.iScience. 2022;25(6):104374.
99. Mettananda S, Gibbons RJ, Higgs DR. α-Globin as a molecular target in the treatment of β-thalassemia. Blood. 2015;125(24):3694-701.
100. Pavani G, Fabiano A, Laurent M, et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv. 2021;5(5):1137-53.
101. Mettananda S, Fisher CA, Hay D, et al. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat Commun. 2017;8(1):424.
102. Mayuranathan T, Newby GA, Feng R, et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet. 2023;55(7):1210-20.
103. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770-788.
104. Leibowitz ML, Papathanasiou S, Doerfler PA, et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet. 2021;53(6):895-905.
105. Haapaniemi E, Botla S, Persson J, et al. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927-930.
106. Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939-946.
107. Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-4.
108. Fu J, Li Q, Liu X, et al. Human cell based directed evolution of adenine base editors with improved efficiency. Nat Commun. 2021;12(1):5897.
109. Antoniou P, Hardouin G, Martinucci P, et al. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nature Commun. 2022;13(1):6618.
110. Park SH, Cao M, Pan Y, et al. Comprehensive analysis and accurate quantification of unintended large gene modifications induced by CRISPR-Cas9 gene editing. Sci Adv. 2022;8(42):eabo7676.
111. Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595(7866):295-302.
112. Ravi NS, Wienert B, Wyman SK, et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. Elife. 2022;11:e65421.
113. Badat M, Ejaz A, Hua P, et al. Direct correction of haemoglobin E β-thalassaemia using base editors. Nat Commun. 2023;14(1):2238.
114. Porto EM, Komor AC. In the business of base editors: evolution from bench to bedside. PLoS Biol. 2023;21(4):e3002071.
115. Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731-40.
116. Choi J, Chen W, Suiter CC, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40(2):218-26.
117. Zhao Z, Shang P, Mohanraju P, et al. Prime editing: advances and therapeutic applications. Trends Biotechnol. 2023;41(8):1000-1012.
118. Lattanzi A, Camarena J, Lahiri P, et al. Development of beta-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med. 2021; 13 (598): eabf2444.
119. Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng. 2023;7(5):616-628.
Files | ||
Issue | Vol 19 No 4 (2025) | |
Section | Review Article(s) | |
Keywords | ||
Gene therapy; CRISPR/Cas; β-thalassemia; Sickle cell anemia; Clinical trials |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |