Review Article

The Role of miRNA-21 in the Metastasis of Hepatocellular Carcinoma as a Therapeutic Target

Abstract

Hepatocellular carcinoma (HCC) is a crucial health concern worldwide, representing a leading cause of cancer-related mortality and the most common form of primary liver cancer. The aggressive nature of HCC is mainly due to its high intention for invasion and metastasis, processes that are regulated by a complex network of genetic and molecular pathways. Among the critical regulators of these processes is microRNA-21 (miR-21), a small non-coding RNA that has been implicated in various oncogenic activities. This review provides a comprehensive analysis of the role of miR-21 in promoting HCC metastasis progression, with a particular focus on its interaction with key signaling pathways, including the PTEN/PI3K/AKT, PDCD4/AP-1, RECK/MMP, and TIMP-3 axes. By targeting tumor suppressors, miR-21 facilitates epithelial-to-mesenchymal transition (EMT), invasion, and metastasis of HCC cells. Understanding the molecular mechanisms regulated by miR-21 not only sheds light on the pathogenesis of HCC but also highlights possible therapeutic targets for combating this aggressive cancer.

1. Brown JS, Amend SR, Austin RH, et al. Updating the Definition of Cancer. Mol Cancer Res. 2023;21(11):1142-7.
2. Brown JS, Amend SR, Austin RH, et al. Updating the definition of cancer. Mol Cancer Res. 2023;21(11):1142-7.
3. Amiri S, Atashi A, Azad M, et al. Upregulation of Pro-inflammatory Cytokine Genes by Parvovirus B19 in Human Bone Marrow Mesenchymal Stem Cells. Biochem Genet. 2020;58(1):63-73.
4. Azad M, Bakhshi Biniaz R, Goudarzi M, et al. Short view of leukemia diagnosis and treatment in Iran. Int J Hematol Oncol Stem Cell Res. 2015;9(2):88-94.
5. Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745-61.
6. Sahmani M, Vatanmakanian M, Goudarzi M, et al. Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers. Asian Pac J Cancer Prev. 2016;17(3):879-94.
7. Maali A, Maroufi F, Sadeghi F, et al. Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics. 2021;13(8):631-47.
8. Amiri S, Adibzadeh S, Ghanbari S, et al. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng. 2023;120(4):865-902.
9. Ding J, Wen Z. Survival improvement and prognosis for hepatocellular carcinoma: analysis of the SEER database. BMC Cancer. 2021;21(1):1157.
10. Srivatanakul P, Sriplung H, Deerasamee S. Epidemiology of liver cancer: an overview. Asian Pac J Cancer Prev. 2004;5(2):118-25.
11. Gravitz L. Liver cancer. Nature. 2014;516(7529):S1.
12. Sun VCY, Sarna L. Symptom management in hepatocellular carcinoma. Clin J Oncol Nurs. 2008;12(5):759-66.
13. Chen Y, Tian Z. HBV-induced immune imbalance in the development of HCC. Front Immunol. 2019;10:2048.
14. Zamor PJ, Delemos AS, Russo MW. Viral hepatitis and hepatocellular carcinoma: etiology and management. J Gastrointest Oncol. 2017;8(2):229-242.
15. Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol. 2014;20(47):17756-72.
16. Rushing BR, Selim MI. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol. 2019;124:81-100.
17. Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 2016;67:103-17.
18. Saitta C, Pollicino T, Raimondo G. Obesity and liver cancer. Anna Hepatol. 2019;18(6):810-5.
19. Larsson S, Wolk A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer. 2007;97(7):1005-8.
20. Zhang W, Xiang YB, Li HL, et al. Vegetable‐based dietary pattern and liver cancer risk: Results from the S hanghai W omen's and M en's H ealth S tudies. Cancer Sci. 2013;104(10):1353-61.
21. Fedirko V, Trichopolou A, Bamia C, et al. Consumption of fish and meats and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol. 2013;24(8):2166-73.
22. Liu GM, Zeng HD, Zhang CY, et al. Key genes associated with diabetes mellitus and hepatocellular carcinoma. Pathol Res Pract. 2019;215(11):152510.
23. Chakinala RC, Dawoodi S, Fabara SP, et al. Association of smoking and e-cigarette in chronic liver disease: an NHANES study. Gastroenterology Res. 2022;15(3):113-119.
24. Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123-33.
25. Ma L. MicroRNA and metastasis. Adv Cancer Res. 2016;132:165-207.
26. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
27. Hojjatipour T, Ajeli M, Maali A, et al. Epigenetic-modifying agents: the potential game changers in the treatment of hematologic malignancies. Crit Rev Oncol Hematol. 2024;204:104498.
28. Liu Y, Xiao J, Zhao Y, et al. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp Mol Pathol. 2020;115:104445.
29. Nelson SR, Roche S, Cotter M, et al. Genomic Profiling and Functional Analysis of let‐7c miRNA‐mRNA Interactions Identify SOX13 to Be Involved in Invasion and Progression of Pancreatic Cancer. J Oncol. 2020;2020:2951921.
30. Azad M, Kaviani S, Soleymani M, et al. Common polymorphism’s analysis of thiopurine S-methyltransferase (TPMT) in Iranian population. Cell J. 2009; 11 (3): 311-316.
31. Fard MB, Atashi A, Amiri S, et al. Parvovirus B19 Affects Thrombopoietin and IL-11 Gene Expression in Human Bone Marrow Mesenchymal Stem Cells. Future Virol. 2021;16(8):519-26.
32. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706-13.
33. Rhim J, Baek W, Seo Y, et al. From molecular mechanisms to therapeutics: understanding MicroRNA-21 in cancer. Cells. 2022;11(18):2791.
34. Zhu Q, Wang Z, Hu Y, et al. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep. 2012;27(5):1660-8.
35. Fan B, Jin Y, Zhang H, et al. MicroRNA‑21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c‑Jun (AP‑1) signalling pathway. Int J Oncol. 2020;56(1):178-92.
36. Monzavi N, Zargar SJ, Gheibi N, et al. Angiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway. Iran J Basic Med Sci. 2019;22(10):1166-71.
37. Khare S, Khare T, Ramanathan R, et al. Hepatocellular carcinoma: the role of microRNAs. Biomolecules. 2022;12(5):645.
38. Xu X, Tao Y, Shan L, et al. The role of MicroRNAs in hepatocellular carcinoma. J Cancer. 2018;9(19):3557-3569.
39. Wang J, Chu Y, Xu M, et al. miR-21 promotes cell migration and invasion of hepatocellular carcinoma by targeting KLF5. Oncol Lett. 2019;17(2):2221-7.
40. Liu Q, Zhang H, Jiang X, et al. Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer. 2017;16(1):176.
41. Mansoori S, Noei A, Maali A, et al. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int. 2024;24(1):304.
42. Hojjatipour T, Sharifzadeh Z, Maali A, et al. Chimeric antigen receptor-natural killer cells: a promising sword against insidious tumor cells. Hum Cell. 2023;36(6):1843-64.
43. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16(4):201-18.
44. Sun Y, Ma L. The emerging molecular machinery and therapeutic targets of metastasis. Trends Pharmacol Sci. 2015;36(6):349-59.
45. Veiseh O, Kievit FM, Ellenbogen RG, et al. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adva Drug Deliv Rev. 2011;63(8):582-96.
46. Hsu CY, Liu PH, Ho SY, et al. Metastasis in patients with hepatocellular carcinoma: prevalence, determinants, prognostic impact and ability to improve the Barcelona Clinic Liver Cancer system. Liver Int. 2018;38(10):1803-11.
47. Mohammed YHE, Thirusangu P, Vigneshwaran V, et al. The anti-invasive role of novel synthesized pyridazine hydrazide appended phenoxy acetic acid against neoplastic development targeting matrix metallo proteases. Biomed Pharmacother. 2017;95:375-86.
48. Folgueras AR, Pendas AM, Sanchez LM, et al. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48(5-6):411-24.
49. Swetha R, Gayen C, Kumar D, et al. Biomolecular basis of matrix metallo proteinase-9 activity. Future Med Chem. 2018;10(9):1093-112.
50. Zaremba-Czogalla M, Hryniewicz-Jankowska A, Tabola R, et al. Dependent migration and invasion of triple-negative breast cancer cells. Cell Signal. 2018, 47, 27–36.
51. Pittayapruek P, Meephansan J, Prapapan O, et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17(6):868.
52. Zhao C, Yuan G, Jiang Y, et al. Capn4 contributes to tumor invasion and metastasis in gastric cancer via activation of the Wnt/β-catenin/MMP9 signalling pathways. Exp Cell Res. 2020;395(2):112220.
53. Singh WR, Devi HS, Kumawat S, et al. Angiogenic and MMPs modulatory effects of icariin improved cutaneous wound healing in rats. Eur J Pharmacol. 2019;858:172466.
54. Song S, Qiu X. LncRNA miR503HG inhibits epithelial-mesenchymal transition and angiogenesis in hepatocellular carcinoma by enhancing PDCD4 via regulation of miR-15b. Dige Liver Dis. 2021;53(1):107-16.
55. Sun Q, Miao J, Luo J, et al. The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J Cell Sci. 2018;131(6):jcs202317.
56. Nguyen HT, Kacimi SEO, Nguyen TL, et al. MiR-21 in the cancers of the digestive system and its potential role as a diagnostic, predictive, and therapeutic biomarker. Biology (Basel). 2021;10(5):417.
57. An T, Dong T, Zhou H, et al. The transcription factor Krüppel-like factor 5 promotes cell growth and metastasis via activating PI3K/AKT/Snail signaling in hepatocellular carcinoma. Biochem Biophys Res Commun. 2019;508(1):159-68.
58. Du Y, Xu Y, Guo X, et al. Methylation-regulated tumor suppressor gene PDE7B promotes HCC invasion and metastasis through the PI3K/AKT signaling pathway. BMC Cancer. 2024;24(1):624.
59. Zhang Y, Yao C, Ju Z, et al. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol. 2023;13:1080720.
60. Jia L, Li J, Li P, et al. Site-specific glycoproteomic analysis revealing increased core-fucosylation on FOLR1 enhances folate uptake capacity of HCC cells to promote EMT. Theranostics. 2021;11(14):6905-6921.
61. Zhou Y, Xue R, Wang J,et al. Puerarin inhibits hepatocellular carcinoma invasion and metastasis through miR-21-mediated PTEN/AKT signaling to suppress the epithelial-mesenchymal transition. Braz J Med Biol Res. 2020;53(4):e8882.
62. Yuan K, Xie K, Lan T, et al. TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin. Cell Death Diff. 2020;27(4):1355-68.
63.Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1:‘Regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer. 2018;17(1):37.
64. Georgescu MM. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1(12):1170-7.
65. Fedorova O, Parfenyev S, Daks A, et al. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel). 2022;14(15):3786.
66. Hlozkova K, Hermanova I, Safrhansova L, et al. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep. 2022;12(1):4043.
67. Tian LY, Smit DJ, Jücker M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 2023;24(3):2652.
68. Wang Z, Cui X, Hao G, et al. Aberrant expression of PI3K/AKT signaling is involved in apoptosis resistance of hepatocellular carcinoma. Open Life Sci. 2021;16(1):1037-44.
69. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647-58.
70. He C, Dong X, Zhai B, et al. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget. 2015;6(30):28867-81.
71. Cao LQ, Yang XW, Chen YB, et al. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer. 2019;18(1):148.
72. Jin L, Liu WR, Tian MX, et al. CCL24 contributes to HCC malignancy via RhoB-VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget. 2017;8(3):5135-5148.
73. Lin HH, Chen JH, Chou FP, et al. Protocatechuic acid inhibits cancer cell metastasis involving the down‐regulation of Ras/Akt/NF‐κB pathway and MMP‐2 production by targeting RhoB activation. Br J Pharmacol. 2011;162(1):237-54.
74. Czauderna C, Castven D, Mahn FL, et al. Context-dependent role of NF-κB signaling in primary liver cancer—from tumor development to therapeutic implications. Cancers (Basel). 2019;11(8):1053.
75. Chan CF, Yau TO, Jin DY, et al. Evaluation of nuclear factor-κB, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clin Cancer Res. 2004;10(12 Pt 1):4140-9.
76. Sun EJ, Wankell M, Palamuthusingam P, et al. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021;9(11):1639.
77. Connolly EC, Van Doorslaer K, Rogler LE, et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res. 2010;8(5):691-700.
78. Bailey CA. Regulation of RhoB gene expression during tumorigenesis and aging process and Its potential applications in these processes. Cancers (Basel). 2019; 1(6):818.
79. Connolly EC, Van Doorslaer K, Rogler LE, et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res. 2010;8(5):691-700.
80. Sabatel C, Malvaux L, Bovy N, et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One. 2011;6(2):e16979.
81. Parikh VN, Jin RC, Rabello S, et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation. 2012;125(12):1520-32.
82. Xu G, Ji W, Su Y, et al. Sulfatase 1 (hSulf-1) reverses basic fibroblast growth factor-stimulated signaling and inhibits growth of hepatocellular carcinoma in animal model. Oncotarget. 2014;5(13):5029-39.
83. Liu L, Ding F, Chen J, et al. hSulf-1 inhibits cell proliferation and migration and promotes apoptosis by suppressing stat3 signaling in hepatocellular carcinoma. Oncol Lett. 2014;7(4):963-9.
84. Bao L, Yan Y, Xu C, et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer lett. 2013;337(2):226-36.
85. Li Q, Ren B, Gui Q, et al. Blocking MAPK/ERK pathway sensitizes hepatocellular carcinoma cells to temozolomide via downregulating MGMT expression. Ann Trans Med. 2020;8(20):1305.
86. Moon H, Ro SW. MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers (Basel). 2021;13(12):3026.
87. Sheng W, Shi X, Lin Y, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res. 2020;39(1):16.
88. Zhou L, Yang ZX, Song WJ, et al. MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol. 2013;43(2):661-9.
89. Teng M, Hu C, Yang B, et al. Salvianolic acid B targets mortalin and inhibits the migration and invasion of hepatocellular carcinoma via the RECK/STAT3 pathway. Cancer Cell Int. 2021;21(1):645.
90. Sarker H, Hardy E, Haimour A, et al. Identification of fibrinogen as a natural inhibitor of MMP-2. Sci Rep. 2019;9(1):4340.
91. Capistrano da Silva E, Gibson DJ, Jeong S, et al. Determining MMP‐2 and MMP‐9 reductive activities of bovine and equine amniotic membranes homogenates using fluorescence resonance energy transfer. Vet Ophthalmol. 2021;24(3):279-87.
92. Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, et al. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci. 2022;308:120932.
93. Chai M, Gu C, Shen Q, et al. Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α. Stem Cell Res Ther. 2020;11(1):343.
94. Li J, Wei H, Liu Y, et al. Curcumin inhibits hepatocellular carcinoma via regulating miR‐21/TIMP3 Axis. Evid Based Complement Alternat Med. 2020:2020:2892917.
95. Wagenaar TR, Zabludoff S, Ahn SM, et al. Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation. Mol Cancer Res. 2015;13(6):1009-21.
96. Elmén J, Lindow M, Schütz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896-9.
97. Callegari E, Elamin BK, Giannone F, et al. Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012;56(3):1025-33.
98. Teng M, Hu C, Yang B, et al. Salvianolic acid B targets mortalin and inhibits the migration and invasion of hepatocellular carcinoma via the RECK/STAT3 pathway. Cancer Cell Int. 2021;21(1):654.
99. Lin L, Fan Y, Gao F, et al. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics. 2018;8(7):1923-1939.
100. He F, Guan W. The role of miR-21 as a biomarker and therapeutic target in cardiovascular disease. Clin Chim Acta. 2025;574:120304.
Files
IssueVol 20 No 1 (2026): Articles In Press QRcode
SectionReview Article(s)
Keywords
Hepatocellular carcinoma; Cancer; Epigenetics; miR-21

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Alaee M, Moulaee M, Taebi K, Haghi A, Hormozi M, Azad M. The Role of miRNA-21 in the Metastasis of Hepatocellular Carcinoma as a Therapeutic Target. Int J Hematol Oncol Stem Cell Res. 2026;20(1).