Articles

Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs

Abstract

Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.

Fard AD, Kaviani S, Saki N, Mortaz E. The emerging role of immunomodulatory agents in fetal hemoglobin induction. International Journal of Hematology-Oncology and Stem Cell Research. 2012;6(4):35-6.

Hagh MF, Fard AD, Saki N, Shahjahani M, Kaviani S. Molecular Mechanisms of hemoglobin F induction. International Journal of Hematology-Oncology and Stem Cell Research. 2011;5(4).

Fard AD, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Chegeni R, et al. Evaluation of H3 Histone Methylation and Colony Formation in Erythroid Progenitors Treated with Thalidomide and Sodium Butyrate. Laboratory Hematology. 2013;19(1):1-5.

D'Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. cell. 1989;57(2):277-85.

Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999;283(5404):987-90.

Nakao T, Geddis AE, Fox NE, Kaushansky K. PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27Kip1. Cell Cycle. 2008;7(2):257-66.

Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993;74(2):227-36.

Barber DL, Mason JM, Fukazawa T, Reedquist KA, Druker BJ, Band H, et al. Erythropoietin and interleukin-3 activate tyrosine phosphorylation of CBL and association with CRK adaptor proteins. Blood. 1997;89(9):3166-74.

Mason JM, Beattie BK, Liu Q, Dumont DJ, Barber DL. The SH2 inositol 5-phosphatase Ship1 is recruited in an SH2-dependent manner to the erythropoietin receptor. Journal of Biological Chemistry. 2000;275(6):4398-406.

Iwayama H, Sakamoto T, Nawa A, Ueda N. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury. Nephron extra. 2011 Jan;1(1):178-89. PubMed PMID: 22470391. Pubmed Central PMCID: 3290860.

Jacobs-Helber SM, Ryan JJ, Sawyer ST. JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood. 2000;96(3):933-40.

Arcasoy MO, Jiang X. Co‐operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor. British journal of haematology. 2005;130(1):121-9.

Banan M, Esmaeilzadeh‐Gharehdaghi E, Nezami M, Deilami Z, Farashi S, Philipsen S, et al. cAMP response element‐binding protein 1 is required for hydroxyurea‐mediated induction of γ‐globin expression in K562 cells. Clinical and Experimental Pharmacology and Physiology. 2012;39(6):510-7.

Bouscary D, Pene F, Claessens Y-E, Muller O, Chrétien S, Fontenay-Roupie M, et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood. 2003;101(9):3436-43.

Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Experimental hematology. 2002 Sep;30(9):990-1000. PubMed PMID: 12225790.

Sivertsen EA, Hystad ME, Gutzkow KB, Dosen G, Smeland EB, Blomhoff HK, et al. PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol. 2006 Oct;135(1):117-28. PubMed PMID: 16965383.

Kadri Z, Maouche-Chretien L, Rooke HM, Orkin SH, Romeo PH, Mayeux P, et al. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol Cell Biol. 2005 Sep;25(17):7412-22. PubMed PMID: 16107690. Pubmed Central PMCID: 1190299.

Uddin S, Kottegoda S, Stigger D, Platanias LC, Wickrema A. Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochemical and biophysical research communications. 2000 Aug 18;275(1):16-9. PubMed PMID: 10944433.

Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. Jak2 Deficiency Defines an EssentialDevelopmental Checkpoint in DefinitiveHematopoiesis. Cell. 1998;93(3):397-409.

Parganas E, Wang D, Stravopodis D, Topham DJ, Marine J-C, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385-95.

Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends in cell biology. 2005;15(3):146-55.

Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Experimental cell research. 1999;253(1):143-56.

Constantinescu SN, Ghaffari S, Lodish HF. The erythropoietin receptor: structure, activation and intracellular signal transduction. Trends in Endocrinology & Metabolism. 1999;10(1):18-23.

Cheung JY, Miller BA. Molecular mechanisms of erythropoietin signaling. Nephron. 2001;87(3):215-22.

Barber DL, Beattie BK, Mason JM, Nguyen MH-H, Yoakim M, Neel BG, et al. A common epitope is shared by activated signal transducer and activator of transcription-5 (STAT5) and the phosphorylated erythropoietin receptor: implications for the docking model of STAT activation. Blood. 2001;97(8):2230-7.

Dehghanifard A, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Hajifathali A, et al. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133+ Cells. Zahedan Journal of Research in Medical Sciences. 2012;14(7):29-33.

Aerbajinai W, Zhu J, Gao Z, Chin K, Rodgers GP. Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood. 2007 Oct 15;110(8):2864-71. PubMed PMID: 17620452. Pubmed Central PMCID: 2018668.

Fathallah H, Portnoy G, Atweh GF. Epigenetic analysis of the human alpha- and beta-globin gene clusters. Blood cells, molecules & diseases. 2008 Mar-Apr;40(2):166-73. PubMed PMID: 18029204. Pubmed Central PMCID: 2270787.

Kodeboyina S, Balamurugan P, Liu L, Pace BS. cJun modulates Gγ-globin gene expression via an upstream cAMP response element. Blood Cells, Molecules, and Diseases. 2010;44(1):7-15.

Fard A, Kaviani S, Noruzinia M, Saki N. Epigenetic modulations on the fetal hemoglobin induction. International Journal of Hematology-Oncology and Stem Cell Research. 2012;6(1).

Boosalis MS, Bandyopadhyay R, Bresnick EH, Pace BS, Van DeMark K, Zhang B, et al. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood. 2001 May 15;97(10):3259-67. PubMed PMID: 11342457.

Sangerman J, Lee MS, Yao X, Oteng E, Hsiao CH, Li W, et al. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves gamma-globin activation by CREB1 and ATF-2. Blood. 2006 Nov 15;108(10):3590-9. PubMed PMID: 16896160. Pubmed Central PMCID: 1895433.

Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutation research. 2008 Dec 1;647(1-2):68-76. PubMed PMID: 18760288. Pubmed Central PMCID: 2617773.

Kodeboyina S, Balamurugan P, Liu L, Pace BS. cJun modulates Ggamma-globin gene expression via an upstream cAMP response element. Blood cells, molecules & diseases. 2010 Jan 15;44(1):7-15. PubMed PMID: 19861239. Pubmed Central PMCID: 2818355.

DeSimone J, Heller P, Hall L, Zwiers D. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proceedings of the National Academy of Sciences. 1982;79(14):4428-31.

Saunthararajah Y, Lavelle D, DeSimone J. DNA hypo‐methylating agents and sickle cell disease. British journal of haematology. 2004;126(5):629-36.

Fathallah H, Atweh GF. Induction of fetal hemoglobin in the treatment of sickle cell disease. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2006:58-62. PubMed PMID: 17124041.

Ikuta T, Ausenda S, Cappellini MD. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America. 2001 Feb 13;98(4):1847-52. PubMed PMID: 11172039. Pubmed Central PMCID: 29345.

Keefer JR, Schneidereith TA, Mays A, Purvis SH, Dover GJ, Smith KD. Role of cyclic nucleotides in fetal hemoglobin induction in cultured CD34+ cells. Experimental hematology. 2006 Sep;34(9):1151-61. PubMed PMID: 16939808.

Tang DC, Zhu J, Liu W, Chin K, Sun J, Chen L, et al. The hydroxyurea-induced small GTP-binding protein SAR modulates gamma-globin gene expression in human erythroid cells. Blood. 2005 Nov 1;106(9):3256-63. PubMed PMID: 15985540. Pubmed Central PMCID: 1895330.

Martelli AM, Chiarini F, Evangelisti C, Grimaldi C, Ognibene A, Manzoli L, et al. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histology and histopathology. 2010 May;25(5):669-80. PubMed PMID: 20238304.

Weinberg RS, Ji X, Sutton M, Perrine S, Galperin Y, Li Q, et al. Butyrate increases the efficiency of translation of γ-globin mRNA. Blood. 2005;105(4):1807-9.

Olivieri NF, Saunthararajah Y, Thayalasuthan V, Kwiatkowski J, Ware RE, Kuypers FA, et al. A pilot study of subcutaneous decitabine in beta-thalassemia intermedia. Blood. 2011 Sep 8;118(10):2708-11. PubMed PMID: 21700776. Pubmed Central PMCID: 3172790.

Sivertsen EA, Hystad ME, Gutzkow KB, Døsen G, Smeland EB, Blomhoff HK, et al. PI3K/Akt‐dependent Epo‐induced signalling and target genes in human early erythroid progenitor cells. British journal of haematology. 2006;135(1):117-28.

Fathallah H, Atweh GF. Induction of fetal hemoglobin in the treatment of sickle cell disease. ASH Education Program Book. 2006;2006(1):58-62.

Rachmilewitz EA, Aker M. The role of recombinant human erythropoietin in the treatment of thalassemia. Annals of the New York Academy of Sciences. 1998;850(1):129-38.

Constantoulakis P, Papayannopoulou T, Stamatoyannopoulos G. alpha-Amino-N-butyric acid stimulates fetal hemoglobin in the adult. Blood. 1988 Dec;72(6):1961-7. PubMed PMID: 2461755.

Fibach E, Prasanna P, Rodgers GP, Samid D. Enhanced fetal hemoglobin production by phenylacetate and 4-phenylbutyrate in erythroid precursors derived from normal donors and patients with sickle cell anemia and beta-thalassemia. Blood. 1993 Oct 1;82(7):2203-9. PubMed PMID: 7691251.

Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, et al. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood. 2000 Oct 1;96(7):2379-84. PubMed PMID: 11001887.

Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cellular and Molecular Life Sciences. 2011;68(9):1569-79.

Rigano P, Pecoraro A, Calzolari R, Troia A, Acuto S, Renda D, et al. Desensitization to hydroxycarbamide following long‐term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. British journal of haematology. 2010;151(5):509-15.

Figueiredo MS, Steinberg MH. Fetal hemoglobin in sickle cell anemia: examination of phylogenetically conserved sequences within the locus control region but outside the cores of hypersensitive sites 2 and 3. Blood cells, molecules & diseases. 1997 Aug;23(2):188-200. PubMed PMID: 9236157.

Fucharoen S, Siritanaratkul N, Winichagoon P, Chowthaworn J, Siriboon W, Muangsup W, et al. Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in beta-thalassemia/hemoglobin E disease. Blood. 1996 Feb 1;87(3):887-92. PubMed PMID: 8562958.

Kovacic P. Hydroxyurea (therapeutics and mechanism): metabolism, carbamoyl nitroso, nitroxyl, radicals, cell signaling and clinical applications. Medical hypotheses. 2011;76(1):24-31.

Files
IssueVol 7, No 3 (2013) QRcode
SectionArticles
Keywords
Fetal hemoglobin Sickle cell disease β-thalassemia

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Rahim F, Allahmoradi H, Salari F, Shahjahani M, Fard AD, Hosseini SA, Mousakhani H. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs. Int J Hematol Oncol Stem Cell Res. 1;7(3):41-46.