The Role of MicroRNAs in Myeloproliferative Neoplasia

  • Shaban Alizadeh Mail Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Seyed Ghader Azizi Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Masoud Soleimani Hematology Department, School of Medicine, Tarbiat Modares University, Tehran, Iran
  • Yadollah Farshi Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Zahra Kashani khatib Hematology Department, School of Medicine, Tarbiat Modares University, Tehran, Iran
MicroRNA, Myeloproliferative neoplasms, Pathogenesis


MiRs are 17-25 nucleotide non-coding RNAs. These RNAs target approximately 80% of protein coding mRNAs. MiRs control gene expression and altered expression of them affects the development of cancer. MiRs can function as tumor suppressor via down-regulation of proto-oncogenes and may function as oncogenes by suppressing tumor suppressors. Myeloproliferative neoplasias (formerly known as chronic myeloproliferative disorders) form a class of hematologic malignancies demonstrating the expansion of stem cells in one or more hematopoietic cell lines. CML results from an acquired translocation known as BCR-ABL (Philadelphia chromosome). JAK2V617F mutation is present in over 95% of PV, 55% of ET and 65% of PMF cases. Aberrant expression of miR is associated with myeloproliferative neoplasias, pathogenesis, disease progress and response to treatment. MiRs can also be potential therapeutic targets. CML is mainly treated by tyrosine kinase inhibitors such as Imatinib. In addition, altered function of miRs may be used as a prognostic factor in treatment. Resistance to Imatinib is currently a major clinical problem. The role of a number of miRs has been demonstrated in this resistance. Changing expression pattern of miRs can be effective in response to treatment and inhibition of drug resistance. In this paper, we set out to evaluate the effect of miRs in pathogenesis and treatment of MPN.


Scherr M, Eder M. Gene silencing by small regulatory RNAs in mammalian cells. Cell cycle. 2007; 6(4):444-9.

Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2011; 717(1):1-8.

Wang Z, Yao H, Lin S, et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer lett. 2013; 331(1):1-10.

Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol. 2006; 33(5-6):504-10.

.Melo SA, Esteller M. Disruption of microRNA nuclear transport in human cancer. Semin Cancer Biol. 2014; 27:46-51.

Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009; 136(4):642-55.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281-97.

Kim VN, Nam JW. Genomics of microRNA. Trends Genet. 2006; 22(3):165-73.

Johanson TM, Lew AM, Chong MM. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 2013; 3(10):130144.

Graves P, Zeng Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics. 2012; 10(5):239-45.

.Flores O, Kennedy EM, Skalsky RL, et al. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 2014; 42(7):4629-39.

.Kanellopoulou C, Monticelli S. A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Semin Cancer Biology. 2008; 18(2):79-88.

.Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010; 11(7):537-61.

Jackstadt R, Hermeking H. MicroRNAs as regulators and mediators of c-MYC function. Biochimica et Biophysica Acta. 2015; 1849(5):544-53.

Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumourtypes. Eur J Cancer. 2010; 46(2):298-311.

Allegra A, Alonci A, Campo S, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012; 41(6):1897-912.

Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011; 8(8):467-77.

Bortoluzzi S, Bisognin A, Biasiolo M, et al. Characterization and discovery of novel miRNAs and moRNAs in JAK2V617F-mutated SET2 cells. Blood. 2012; 119(13):e120-30.

Hammond SM. MicroRNAs as oncogenes. Curr Opinion Genet Develop. 2006; 16(1):4-9.

Gartel AL, Kandel ES. MiRNAs: Little known mediators of oncogenesis. Semin Cancer Biol. 2008; 18(2):103-10.

Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009; 136(4):586-91.

Zhang B, Pan X, Cobb GP, et al. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007; 302(1):1-12.

Mirnezami AH, Pickard K, Zhang L, et al. MicroRNAs: key players in carcinogenesis and novel therapeutictargets. Eur J Surg Oncol. 2009; 35(4):339-47.

Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011; 29(11):1661-71.

.Garzon R, Fabbri M, Cimmino A, et al. MicroRNA expression and functionin cancer. Trends Mol Med. 2006; 12(12):580-7.

Mirnezami A, Pickard K, Zhang L, et al. MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol. 2009; 35(4):339-47.

Klco JM, Vij R, Kreisel FH, et al. Molecular pathology of myeloproliferative neoplasms. Am J Clin Pathol. 2010; 133(4):602-15.

Kim J, Haddad RY, Atallah E. Myeloproliferative neoplasms. Disease-a-month: DM. 2012; 58(4)94-177.

Kvasnicka HM. WHO classification of myeloproliferative neoplasms (MPN): a critical update. Current Hematologic Malignancy Reports. 2013; 8(4):333-41.

Liu L, Wang S, Chen R, et al. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun. 2012; 425(2):368-73.

Shen AQ, Wilson NM, Gleason SL, et al. Bosutinib in the treatment of patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia: an overview. Ther Adv Hematol. 2014; 5(1):13-17.

Jorgensen H, Holyoake T. Characterization of cancer stem cells in chronic myeloid leukaemia. Biochemical Society Transactions. 2007; 35(5):1347-51.

Liu H, Liu Y, Liu Q. Progress of study on microRNA and chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi/Zhongguo. 2012; 20(1):192-5.

Liu Y, Song Y, Ma W, et al. Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia. Leuk Res. 2013; 37(3):349-56.

Suresh S, McCallum L, Lu W, et al. MicroRNAs 130a/b are regulated by BCR-ABL and downregulate expression of CCN3 in CML. J Cell Commun Signal. 2011; 5(3):183-91.

McCallum L, Price S, Planque N, et al. A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood. 2006; 108(5):1716-23.

Fei J, Li Y, Zhu X, et al. MiR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS One. 2012; 7(3):e32834.

Agatheeswaran S, Singh S, Biswas S, et al. BCR-ABL mediated repression of miR-223 results in the activation of MEF2C and PTBP2 in chronic myeloid leukemia. Leukemia. 2013; 27(7):1578-80.

Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007; 109(10):4399-405.

Li Y, Yuan Y, Tao K, et al. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PloS one. 2013; 8(4):e61858.

Rokah OH, Granot G, Ovcharenko A, et al. Down-regulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One. 2012; 7(4):e35501.

Li Y, Wang H, Tao K, et al. MiR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res. 2013; 319(8):1094-101.

.Lee TY, Ezelle HJ, Venkataraman T, et al. Regulation of human RNase-L by the miR-29 family reveals a novel oncogenic role in chronic myelogenous leukemia. J Interferon Cytokine Res. 2013; 33(1):34-42.

Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia. 2012; 26(8):1752-60.

Deppe S, Ripperger A, Weiss J, et al. Impact of genetic variability in the ABCG2 gene on ABCG2 expression, function, and interaction with AT1 receptor antagonist telmisartan. Biochem Biophys Res Commun. 2014; 443(4):1211-7.

Turrini E, Haenisch S, Laechelt S, et al. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics. 2012; 22(3):198-205.

Babashah S, Sadeghizadeh M, Hajifathali A, et al. Targeting of the signal transducer Smo links microRNA‐326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013; 133(3):579-89.

.Ruat M, Hoch L, Faure H, et al. Targeting of Smoothened for therapeutic gain. Trends Pharmacol Sci. 2014; 35(5):237-46.

Agirre X, Jiménez-Velasco A, San José-Enériz E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008; 6(12):1830-40.

Hu H, Li Y, Gu J, et al. Antisense oligonucleotide against miR-21 inhibits migration andinduces apoptosis in leukemic K562 cells. Leuk lymphoma. 2010; 51(4):694-701.

.Alijani S, Alizadeh S, Kazemi A, et al. Evaluation of the Effect of miR-26b Up-Regulation on HbF Expression in Erythroleukemic K-562Cell Line. Avicenna J Med Biotechnol. 2014; 6(1):53-56.

Xu C, Fu H, Gao L, et al. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014; 33(1):44-54.

Alizadeh S, Kaviani S, Soleimani M, et al. Mir-155 Down-regulation by miRCURY LNA™ microRNA Inhibitor Can Increase alpha Chain Hemoglobins Expression in Erythroleukemic K562 Cell Line. Int J Hematol Oncol Stem Cell Res. 2010; 4(2):4-9.

.Kouhkan F, Alizadeh S, Kaviani S, et al. MiR-155 down-regulation by LNA inhibitor can reduce cell growth and proliferation in PC12 cell line. Avicenna J Med Biotechnol. 2011; 3(2):61-6.

.Liu Y, Zheng W, Song Y, et al. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis. PloS one. 2013; 8(7):e68442.

Faber J, Gregory RI, Armstrong SA. Linking miRNA regulation to BCR-ABL expression: the next dimension. Cancer Cell. 2008; 13(6):467-9.

Shibuta T, Honda E, Shiotsu H, et al. Imatinib induces demethylation of miR-203 gene: An epigenetic mechanism of anti-tumor effect of imatinib. Leuk Res. 2013; 37(10):1278-86.

Bueno MJ, de Castro IP, de Cedrón MG, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008; 13(6):496-506.

Nishioka C, Ikezoe T, Yang J, et al. Down-regulation of miR‐217 correlates with resistance of ph+ leukemia cells to ABL tyrosine kinase inhibitors. Cancer Sci. 2014; 105(3):297-307.

Soriano G, Heaney M. Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol. 2013; 20(2):169-75.

Cazzola M, Skoda R. Gain of function, loss of control-a molecular basis for chronic myeloproliferative disorders. Haematologica. 2005; 90(7):871-4.

Jäger R, Kralovics R. Molecular basis and clonal evolution of myeloproliferative neoplasms. Haematologica. 2010; 95(4):526-9.

Bortoluzzi S, Bisognin A, Biasiolo M, et al. Characterization and discovery of novel miRNAs and moRNAs in JAK2V617F-mutated SET2 cells. Blood. 2012; 119(13):e120-30.

.Tefferi A. Primary myelofibrosis: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2011; 86(12):1017-26.

.Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med. 2010; 5(3):177-84.

Zhan H, Cardozo C, Raza A. MicroRNAs in myeloproliferative neoplasms. Br J Haematol. 2013; 161(4):471-83.

Chim CS, Wan TS, Wong KY, et al. Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-negative myeloproliferative neoplasms. J Transl Med. 2011; 9:197.

Girardot M, Pecquet C, Boukour S, et al. MiR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood. 2010; 116(3):437-45.

.Lin X, Rice K, Buzzai M, et al. MiR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia. 2013; 27(2):344-52.

Hussein K, Dralle W, Theophile K, et al. Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol. 2009; 88(4):325-32.

.Landolfi R, Nicolazzi MA, Porfidia A, et al. Polycythemia vera. Intern Emerg Med. 2010; 5(5):375-84.

.Lawrie CH. MicroRNA expression in erythropoiesis and erythroid disorders. Br J Haematol. 2010; 150(2):144-51.

Bruchova-Votavova H, Yoon D, Prchal JT. MiR-451 enhances erythroid differentiation in K562 cells. Leuk Lymph. 2010; 51(4):686-93.

.Kouhkan F, Hafizi M, Mobarra N, et al. MiRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Appl Biochem Biotechnol. 2014; 172(4):2055-69.

Zhan H, Cardozo C, Yu W, et al. MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. Blood Cells Mol Dis. 2013; 50(3):190-5.

Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. Haematologica. 2008; 93(7):1009-16.

Guglielmelli P, Tozzi L, Bogani C, et al. Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood. 2011; 117(25):6923-7.

Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAsin normal and polycythemia vera erythropoiesis. Exp Hematol. 2007; 35(11):1657-67.

Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005; 23(33):8520-30.

Guglielmelli P, Tozzi L, Pancrazzi A, et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol. 2007; 35(11):1708-18.

Albano F, Anelli L, Zagaria A, et al. SETBP1 and miR_4319 dysregulation in primary myelofibrosis progression to acute myeloid leukemia. J Hematol Oncol. 2012; 5:48.

Hussein K, Theophile K, Dralle W, et al. MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets. 2009; 20(6):391-400.

Gebauer N, Bernard V, Gebauer W, et al. MicroRNA expression and JAK2 allele burden in bone marrow trephine biopsies of polycythemia vera, essential thrombocythemia andearly primary myelofibrosis. Acta Haematol. 2013; 129(4):251-6.

Alvarez-Larran A, Cervantes F, Besses C. [Treatment of essential thrombocythemia]. Medicina clinica. 2013; 141(6):260-4.

.Pósfai É, Marton I, Szőke A, et al. Stroke in essential thrombocythemia. J Neurol Sci. 2014; 336(1):260-2.

Slezak S, Jin P, Caruccio L, et al. Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and-133a. J Transll Med. 2009; 7:39.

Głowacki S, Trela E, Błasiak J. Crosstalk between BCR/ABL and RNAi. Acta Haematologica Polonica. 2013; 44(4):363-9.

.Fatica A, Fazi F. MicroRNA-regulated pathways in hematological malignancies: how to avoid cells playing out of tune. Int J Mol Sci. 2013; 14(10):20930-53.

Joshi D, Chandrakala S, Korgaonkar S, et al. Down-regulation of miR-199bassociated with imatinib drug resistance in 9q34. 1 deleted BCR/ABL positive CML patients. Gene. 2014; 542(2):109-12.

Firatligil B, Biray Avci C, Baran Y. MiR-17 in imatinib resistance and response to tyrosine kinase inhibitors in chronic myeloid leukemia cells. J BUON. 2013; 18(2):437-41.

Ferreira A, Moura L, Tojal I, et al. ApoptomiRs expression modulated by BCR–ABL is linked to CML progressionand imatinib resistance. Blood Cells Mol Dis. 2014; 53(1):47-55.

Flamant S, Ritchie W, Guilhot J, et al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010; 95(8):1325-33.

Li Y, Zhu X, Gu J, et al. Anti‐miR‐21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci. 2010; 101(4):948-54.

Liu L, Chen R, Huang S, et al. MiR-153 sensitized the K562 cells to As2O3-induced apoptosis. Med Oncol. 2012; 29(1):243-7.

Zhou M, Zeng J, Wang X, et al. MiR-370 sensitizes chronic myeloid leukemia K562 cells to homoharringtonine bytargeting Forkhead box M1. J Transl Med. 2013; 11:265.

Mosakhani N, Mustjoki S, Knuutila S. Down-regulation of miR-181c in imatinib-resistant chronic myeloid leukemia. Mol Cytogenet. 2013; 6(1):27.

How to Cite
Alizadeh S, Azizi SG, Soleimani M, Farshi Y, Kashani khatib Z. The Role of MicroRNAs in Myeloproliferative Neoplasia. Int J Hematol Oncol Stem Cell Res. 10(3):172-185.