Xmn1-158 γGVariant in B-Thalassemia Intermediate Patients in South-East of Iran
Abstract
Background: Xmn-1 polymorphism of
Neishabury M, Azarkeivan A, Oberkanins C, et al. Molecular mechanisms underlying thalassemia intermedia in Iran. Genetic testing. 2008;12(4):549-56.
Galanello R, Origa R. Review: beta-thalassemia. Orphanet J Rare Dis. 2010;5(1):11.
Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012;Suppl 1:S3-6. doi: 10.1016/S0268-960X(12)70003-6.
Galanello R. Recent advances in the molecular understanding of non-transfusion-dependent thalassemia. Blood Rev. 2012;26:(Suppl 1):s7–s11.
Mohammdai-Asl J, Ramezani A, Norozi F, et al. The Influence of Polymorphisms in Disease Severity in β-Thalassemia. Biochem Genet. 2015:1-9.
Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107(2):435-43.
Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61-76.
Motovali-Bashi M, Ghasemi T. Role of XmnIγG Polymorphism in Hydroxyurea Treatment and Fetal Hemoglobin Level at Isfahanian Intermediate β-Thalassemia Patients. Iranian Biomedical Journal. 2015;19(2):124-9.
Bhagat S, Patra PK, Thakur AS. Association between XmnI Polymorphism and HbF Level in Sickle Cell Disease Patients from Chhattisgarh. Int J Biomed Sci. 2012;8(1):36-9.
Khelil AH, Morinière M, Laradi S, Khelif A, Perrin P, Chibani JB, et al. Xmn I polymorphism associated with concomitant activation of G γ and A γ globin gene transcription on a β 0-thalassemia chromosome. Blood Cells Mol Dis. 2011;46(2):133-8.
Hanif TB, Ahmed S, Anwar J, et al. XmnI polymorphism anddisease severity in paients withbetathalassemiafrom northern Pakistan. J Ayub Med Coll Abbottabad. 2015;27(1):13-6.
Verma IC, Kleanthous M, Saxena R, et al. Multicenter study of the molecular basis of thalassemia intermedia in different ethnic populations. Hemoglobin. 2007;31(4):439-52.
Ansari SH, Shamsi TS, Munzir S, et al. Ggamma-Xmn I polymorphism: a significant determinant of beta-thalassemia treatment without blood transfusion. J Pediatr Hematol Oncol. 2013;35(4):e153-6.
Alebouyeh M, Moussavi F, Haddad-Deylami H, et al. Hydroxyurea in the treatment of major beta-thalassemia and importance of genetic screening. Ann Hematol. 2004;83(7):430-3.
Karimi M, Yarmohammadi H, Farjadian S, et al. β-Thalassemia intermedia from southern Iran: IVS-II-1 (G→ A) is the prevalent thalassemia intermedia allele. Hemoglobin. 2002;26(2):147-54.
Qatanani M, Taher A, Koussa S, et al. β‐Thalassaemia intermedia in Lebanon. Eur J Haematol. 2000;64(4):237-44.
Arab A, Karimipoor M, Rajabi A, et al. Molecular characterization of β-thalassemia intermedia: a report from Iran. Mol Biol Rep. 2011;38(7):4321-6.
Akbari MT, Izadi P, Izadyar M, et al. Molecular basis of thalassemia intermedia in Iran. Hemoglobin. 2008;32(5):462-70.
Eshghi P, Zadeh-Vakili A, Rashidi A, et al. An unusually frequent β-thalassemia mutation in an Iranian province. Hemoglobin. 2008;32(4):387-92.
Miri-Moghaddam E, Zadeh-Vakili A, Nikravesh A, et al. Sistani population: a different spectrum of β-thalassemia mutations from other ethnic groups of Iran. Hemoglobin. 2013;37(2):138-47.
Miri-Moghaddam E, Naderi M, Izadi S, et al. Causes of new cases of major thalassemia in sistan and balouchistan province in South-East of iran. Iranian journal of public health. 2012;41(11):67.
Ahmad NN, Cu-Unjieng AB, Donoso LA. Modification of standard proteinase K/phenol method for DNA isolation to improve yield and purity from frozen blood. J Med Genet. 1995;32(2):129-30.
Miri-Moghaddam E, Zadeh-Vakili A. Profile of β-Thalassemia and its Prenatal Diagnosis in Khorasan-E-Jonobi Province, Iran. Hemoglobin. 2012;36(5):456-63.
Miri‐Moghaddam E, Zadeh‐Vakili A, Rouhani Z, et al. Molecular basis and prenatal diagnosis of β‐thalassemia among Balouch population in Iran. Prenat Diagn. 2011;31(8):788-91.
Taher AT, Musallam KM, Cappellini MD. Thalassaemia intermedia: an update. Mediterr J Hematol Infect Dis. 2009;1(1):e2009004.doi: 10.4084/MJHID.2009.004.
Thein SL, Menzel S, Lathrop M, et al. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009;18(R2):R216-R23.
Nemati H, Rahimi Z, Bahrami G. The Xmn1 polymorphic site 5′ to the Gγ gene and its correlation to the Gγ: Aγ ratio, age at first blood transfusion and clinical features in β-Thalassemia patients from Western Iran. Mol Biol Rep. 2010;37(1):159-64.
Shamoon RP, Al-Allawi NA, Cappellini MD, et al. Molecular basis of beta-thalassemia intermedia in Erbil province of Iraqi Kurdistan. Hemoglobin. 2015;39(3):178-83.
Adekile AD, Azab AF, Al-Sharida SI, et al. Clinical and molecular characteristics of non-transfusion-dependent thalassemia in Kuwait. Hemoglobin. 2015(ahead-of-print):1-7.
Galanello R, Sanna S, Perseu L, et al. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood. 2009;114(18):3935-7.
Kumar R, Kaur A, Agarwal S. Influence of Xmn 1(G)gamma (HBG2 c.-211 C --> T) Globin Gene Polymorphism on Phenotype of Thalassemia Patients of North India. Indian J Hematol Blood Transfus. 2014;30(4):286-90.
Dadheech S, Jain S, Madhulatha D, et al. Association of Xmn1 -158 gammaG variant with severity and HbF levels in beta-thalassemia major and sickle cell anaemia. Mol Biol Rep. 2014;41(5):3331-7.
Thein SL. Genetic association studies in β-hemoglobinopathies. ASH Education Program Book. 2013;2013(1):354-61.
Sedgewick AE, Timofeev N, Sebastiani P, et al. BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies. Blood Cells Mol Dis. 2008;41(3):255-8.
Fanis P, Kousiappa I, Phylactides M, et al. Genotyping of BCL11A and HBS1L-MYB SNPs associated with fetal haemoglobin levels: a SNaPshot minisequencing approach. BMC Genomics. 2014;15(1):108.
Gorji F, Hamid M, Arab A, et al. Relationship between DNA polymorphisms at the BCL11A and HBS1L-MYB loci in β-Thalassemia patients with increased fetal hemoglobin levels. Sci J Blood Transfus Organ. 2011;8(3):149-57.
Neishabury M, Azarkeivan A, Najmabadi H. Frequency of Positive XmnI G γ polymorphism and coinheritance of common alpha thalassemia mutations do not show statistically significant difference between thalassemia major and intermedia cases with homozygous IVSII-1 mutation. Blood Cells Mol Dis. 2010;44(2):95-9.
Oberoi S, Das R, Panigrahi I, et al. Xmn1‐Gγ polymorphism and clinical predictors of severity of disease in β‐thalassemia intermedia. Pediatr Blood Cancer. 2011;57(6):1025-8.
Oberoi S, Das R, Panigrahi I, et al. Xmn1-G gamma polymorphism and clinical predictors of severity of disease in beta-thalassemia intermedia. Pediatr Blood Cancer. 2011;57(6):1025-8.
Hamid M, Mahjoubi F, Akbari MT, et al. Molecular analysis of γ-globin promoters, HS-111 and 3′ HS1, in β-thalassemia intermedia patients associated with high levels of Hb F. Hemoglobin. 2009;33(6):428-38.
Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proceedings of the National Academy of Sciences. 2008;105(5):1620-5.
Files | ||
Issue | Vol 11, No 2 (2017) | |
Section | Articles | |
Keywords | ||
Xmn-1 polymorphism β-thalassemia intermediate Hemoglobin F |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |