Original Article

Association between (GT)n Repeats in Heme Oxygenase-1 Gene Promoter and 3-Year Survival of Patients with Acute Leukemia: A Controlled, Cross-Sectional Study

Abstract

Background: Acute leukemia is a common pediatric cancer. Novel strategies for treatment of acute leukemia have been developed, but treatment resistance has remained as the most problematic issue. It is hypothesized that the HO-1 gene up-regulation is responsible for tumor resistance to chemotherapy or radiotherapy-induced apoptosis. HO-1 expression levels have been related to (GT)n microsatellite polymorphisms in the location of its promoter.This study designed to compare allelic frequencies of (GT)n microsatellite polymorphisms in HO-1 gene between acute leukemia patients and healthy controls. Indeed, 3-year disease-free survival was also evaluated.
Materials and Methods: The study included 63 acute leukemia patients and 70 healthy infants. We used patient’s medical records to collect data regarding the post-chemotherapy survival. The number of GT repeats in HO-1 promoter was determined by an ABI 3100 sequencer.
Results: The HO-1 GT repeats ranged from 14 to 34 with peaks at 27 repeats in both cases and controls. Children with longer alleles ((GT)n ≥ 27) had enhanced 3-year survival rate after treatment with chemotherapy or radiotherapy (P<0.05).
Conclusion: Although no significant differences were observed between leukemia patients and controls regarding allelic frequency, we found elevated frequency of “LL” genotype in leukemia patients with good 3-year surveillance. Radiotherapy and chemotherapy might elevate the expression levels of HO-1 with subsequent increased resistance of leukemia patients to therapy.

 

Lo Nigro L. Biology of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2013;35(4):245-52.

Arora RS, Arora B. Acute leukemia in children: A review of the current Indian data. South Asian J Cancer. 2016; 5(3):155-60.

Hunger SP, Raetz EA, Loh ML, et al. Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr Blood Cancer. 2011;56(6):984-93.

Conter V, Aricò M, Basso G, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):255-64.

Hunger SP, Winick NJ, Sather HN, et al. Therapy of low-risk subsets of childhood acute lymphoblastic leukemia: when do we say enough? Pediatr Blood Cancer. 2005;45(7):876-80.

Aricò M, Conter V, Valsecchi MG, et al. Treatment reduction in highly selected standard-risk childhood acute lymphoblastic leukemia. The AIEOP ALL-9501 study. Haematologica. 2005;90(9):1186-91.

Van Dongen-Melman JE, De Groot A, Van Dongen JJ, et al. Cranial irradiation is the major cause of learning problems in children treated for leukemia and lymphoma: a comparative study. Leukemia. 1997;11(8):1197-200.

Dorantes-Acosta E, Pelayo R. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity? Bone Marrow Res. 2012; 2012: 406796.

Belson M, Kingsley B, Holmes A. Risk factors for acute leukemia in children: a review. Environ Health Perspect. 2007; 115(1):138-145.

Heasman SA, Zaitseva L, Bowles KM, et al. Protection of acute myeloid leukaemia cells from apoptosis induced by front-line chemotherapeutics is mediated by haem oxygenase-1. Oncotarget. 2011; 2(9):658-668.

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10-29.

Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011; 29(5):532-43.

Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol rev. 2006; 86(2):583-650.

Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006; 86(2):583-650.

Kiemer AK, Bildner N, Weber NC, et al. Characterization of heme oxygenase 1 (heat shock protein 32) induction by atrial natriuretic peptide in human endothelial cells. Endocrinology. 2003;144(3):802-12.

Immenschuh S, Ramadori G. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol. 2000;60(8):1121-8.

Exner M, Minar E, Wagner O, et al. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med. 2004;37(8):1097-104.

Salinas M, Diaz R, Abraham NG, et al. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem. 2003;278(16):13898-904.

Martin D, Rojo AI, Salinas M, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279(10):8919-29.

Malaguarnera L, Imbesi RM, Scuto A, et al. Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem. 2004;93(1):197-206.

Lam CW, Getting SJ, Perretti M. In vitro and in vivo induction of heme oxygenase 1 in mouse macrophages following melanocortin receptor activation. J Immunol. 2005;174(4):2297-304.

Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004;9(1):27-35.

Mayerhofer M, Florian S, Krauth MT, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64(9):3148-54.

Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal. 2007;9(12):2099-117.

Yajima T, Ochiai H, Uchiyama T, et al. Resistance to cytotoxic chemotherapy-induced apoptosis in side population cells of human oral squamous cell carcinoma cell line Ho-1-N-1. Int J Oncol. 2009;35(2):273-80.

Tang D, Tang WJ, Shi XL, et al. Association of the microsatellite (GT) n repeat polymorphisms of the HO-1 gene promoter and corresponding serum levels with the risk of laryngeal squamous cell carcinoma. Acta Otolaryngol. 2016; 136(8):806-11.

Køllgaard T, Kornblit B, Petersen J, et al. (GT)n Repeat Polymorphism in Heme Oxygenase-1 (HO-1) Correlates with Clinical Outcome after Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. PloS one. 2016;11(12):e0168210.

Rich A, Nordheim A, Wang AH. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791-846.

Naylor LH, Clark EM. d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res. 1990;18(6):1595-601.

Delic J, Onclercq R, Moisan-Coppey M. Inhibition and enhancement of eukaryotic gene expression by potential non-B DNA sequences. Biochem Biophys Res Commun. 1991;181(2):818-26.

Waring GO 3rd, Laibson PR. Keratoplasty in infants and children. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83(2):283-96.

Sawa T, Mounawar M, Tatemichi M, et al. Increased risk of gastric cancer in Japanese subjects is associated with microsatellite polymorphisms in the heme oxygenase-1 and the inducible nitric oxide synthase gene promoters. Cancer Lett. 2008;269(1):78-84.

Javanmard SH, Keyhanian K, Loghmani P, et al. Association between heme oxygenase-1 gene promoter polymorphisms and metabolic syndrome in Iranians. Mol Biol Rep. 2012; 39(3):3355-60.

Lo SS, Lin SC, Wu CW, et al. Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastric adenocarcinoma and lymphovascular tumor invasion Ann Surg Oncol. 2007;14(8):2250-6.

Berberat PO, Dambrauskas Z, Gulbinas A, et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res. 2005;11(10):3790-8.

Marinissen MJ, Tanos T, Bolos M, et al. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J Biol Chem. 2006;281(16):11332-46.

Sunamura M, Duda DG, Ghattas MH, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis. 2003;6(1):15-24.

Yanagawa T, Omura K, Harada H, et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol. 2004;40(1):21-7.

Mayerhofer M, Gleixner KV, Mayerhofer J, et al. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood. 2008;111(4):2200-10.

Fang J, Sawa T, Akaike T, et al. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer. 2004;109(1):1-8.

Nowis D, Legat M, Grzela T, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene. 2006;25(24):3365-74.

Was H, Sokolowska M, Sierpniowska A, et al. Effects of heme oxygenase-1 on induction and development of chemically induced squamous cell carcinoma in mice. Free Radic Biol Med. 2011;51(9):1717-26.

Ferrando M, Wan X, Meiss R, et al. Heme oxygenase-1 (HO-1) expression in prostate cancer cells modulates the oxidative response in bone cells. PloS One. 2013;8(11):e80315.

Labanca E, De Luca P, Gueron G, et al. Association of HO-1 and BRCA1 is Critical for the Maintenance of Cellular Homeostasis in Prostate Cancer. Mol Cancer Res. 2015; 13(11):1455-64.

Traverso N, Ricciarelli R, Nitti M, et al. Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative Medicine and Cellular Longevity. 2013; 2013.

Chang KW, Lee TC, Yeh WI, et al. Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br J Cancer. 2004;91(8):1551-5.

Files
IssueVol 12, No 1 (2018) QRcode
SectionOriginal Article(s)
Keywords
Acute leukemia 3-year survival GT repeats Heme oxygenase-1 gene promoter

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kazemi M, Khosravian F, Sameti AA, Moafi A, Merasi MR, Salehi M, Nejati M, Behjati M. Association between (GT)n Repeats in Heme Oxygenase-1 Gene Promoter and 3-Year Survival of Patients with Acute Leukemia: A Controlled, Cross-Sectional Study. Int J Hematol Oncol Stem Cell Res. 2018;12(1):49-56.