Microbiota and Hematological Diseases
Abstract
ABSTRACT
The microbiota is directly involved in the host metabolic process, as well as in immune response modulation and recruitment of different cells typology in the inflammatory site. Human microbiota modification (dysbiosis) is a condition that could be correlated with various pathologies. The short-chain fatty acids produced by the metabolic process have an important role as immune mediators. In the hematology field, dysbiosis can represent a predisposing condition for triggering and/or conditioning both non-neoplastic (iron deficiency anemia, thrombosis, thrombocytosis, or thrombocytopenia) and neoplastic disorders (lymphomas, leukemias, myeloma). Dysbiosis may also interfere with therapy efficacy (iron supplementation, chemotherapy, immunotherapy, and hematopoietic stem cell transplantation), impacting on patient's outcome.
2. Sommer F, Bäckhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013; 11(4): 227 - 38.
3. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999; 65(11): 4799 - 807.
4. Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2): 697 - 703.
5. Amann R, Springer N, Ludwig W, et al. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991;351(6322): 161- 4.
6. Woodmansey EJ, McMurdo MET, Macfarlane GT, et al. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol. 2004; 70(10): 6113 - 22.
7. Biagi E, Candela M, Turroni S, et al. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res. 2013; 69(1): 11- 20.
8. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016; 22(10): 1079 - 1089.
9. Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013; 6(4): 295-308.
10. Kelly JR, Kennedy PJ, Cryan JF, et al. Breakingdown the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015; 9: 392.
11. Kishikawa H, Nishida J, Nakano M, et al. Ulcerative colitis associated with aplastic anemia. Dig Dis Sci. 2003; 48(7): 1376-9.
12. Sharma BC, Yachha SK, Mishra RN, et al. Hypoplastic anemia associated with ulcerative colitis in a child. J Pediatr Gastroenterol Nutr. 1996; 23(3): 326-8.
13. Allegra A, Innao V, Allegra AG, et al. Role of the microbiota in hematologic malignancies. Neth J Med. 2019; 77(2): 67-80.
14. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013; 48(1): 10–5.
15. Peyssonnaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006; 107(9): 3727-32.
16. Khan FA, Fisher MA, Khakoo RA. Association of hemochromatosis with infectious diseases: expanding spectrum. Int J Infect Dis. 2007; 11(6): 482-7.
17. Orf K, Cunnington AJ. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front Microbiol 2015; 6: 666.
18. Ohkawara Y, Bamba M, Nakai I, et al. The absorption of iron from the human large intestine. Gastroenterology. 1963; 44: 611-4.
19. Johnston KL, Johnson DM, Marks J, et al. Non-haem iron transport in the rat proximal colon. Eur J Clin Invest. 2006; 36(1): 35-40.
20. Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals (Basel). 2018; 11(4):98.
21. Kaur N, Chen CC, Luther J, et al. Intestinal dysbiosis in inflammatory bowel disease. Gut Microbes. 2011; 2(4): 211-6.
22. Jaeggi T, Kortman GA, Moretti D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015; 64(5):731-42.
23. Swinkels DW, Tjalsma H, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015; 64(5): 731-42.
24. Frawley ER, Fang FC. The ins and outs of bacterial iron metabolism. Mol Microbiol. 2014; 93(4): 609-16.
25. Cremonesi P, Acebron A, Raja KB, et al. Iron absorption: Biochemical and molecular insights into the importance of iron species for intestinal uptake. Pharmacol Toxicol. 2002; 91(3): 97-102.
26. Cines DB, Liebman H, Stasi R. Pathobiology of secondary immune thrombocytopenia. Semin Hematol. 2009; 46 (1 Suppl 2): S2-14.
27. Assinger A. Platelets and infections - An emerging role of platelets in viral infection. Front Immunol. 2014; 5: 649.
28. Pockros PJ, Duchini A, McMillan R, et al. Immune thrombocytopenic purpura in patients with chronic hepatitis C virus infection. Am J Gastroenterol. 2002; 97(8): 2040-5.
29. Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001; 98(9):2720-5.
30. D’Angelo G. Inflammation and coagulation: a “continuum” between coagulation activation and prothrombotic state. J Blood Disord. 2015; 2: 1023 - 1027.
31. Hasan RA, Koh AY, Zia A. The Gut Microbiome and Thromboembolism. Thromb Res. 2020; 189: 77-87.
32. Vinchi F. Thrombosis Prevention: Let’s drug the microbiome! HemaSphere, 2019; 3(1): e165.
33. Lou KJ. B cell lymphoma and the microbiome. SciBX. 2013; 31(6); 812.
34. O’Rourke JL. Gene expression profiling in Helicobacter-induced MALT lymphoma with reference to antigen drive and protective immunization. J Gastroenterol Hepatol. 2008; 23 Suppl 2: S151–6.
35. Banks PM. Gastrointestinal lymphoproliferative disorders. Histopathology. 2007; 50(1): 42-54.
36. Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer. 2004; 4(8): 644-53.
37. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, et al. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991; 338(8776): 1175-6.
38. Bayerdorffer E, Neubauer A, Rudolph B, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet. 1995; 345(8965): 1591- 4.
39. O’Rourke JL, Dixon MF, Jack A, et al. Gastric B-cell mucosa-associated lymphoid tissue (MALT) lymphoma in an animal model of ‘Helicobacter heilmannii’ infection. J Pathol. 2004; 203(4): 896- 903.
40. Schöllkopf C, Melbye M, Munksgaard L, et al. Borrelia infection and risk of non-Hodgkin lymphoma. Blood. 2008; 111(12): 5524-9.
41. Chang CM, Landgren O, Koshiol J, et al. Borrelia and subsequent risk of solid tumors and hematologic malignancies in Sweden. Int J Cancer. 2012; 131(9): 2208-9.
42. Marcotte EL, Ritz B, Cockburn M, et al. Exposure to infections and risk of leukemia in young children. Cancer Epidemiol Biomarkers Prev. 2014; 23(7): 1195-203.
43. Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012; 336(6080): 489- 93.
44. Lim ES, Zhou Y, Zhao G, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015; 21(10): 1228-34.
45. Laforest-Lapointe I, Arrieta MC. Patterns of early-life gut microbial colonization during human immune development: an ecological perspective. Front Immunol. 2017; 8: 788.
46. Torow N, Hornef MW. The neonatal window of opportunity: setting the stage for life-long host–microbial interaction and immune homeostasis. J Immunol. 2017; 198(2): 557-563.
47. Haas, OA. Primary immunodeficiency and cancer predisposition revisited: embedding two closely related concepts into an integrative conceptual framework. Front Immunol. 2019; 9: 3136.
48. Ajrouche R, Rudant J, Orsi L, et al. Childhood acute lymphoblastic leukaemia and indicators of early immune stimulation: the Estelle study (SFCE). Br J Cancer. 2015; 112(6):1017-26.
49. Chang, JS, Tsai CR, Tsai YW, et al. Medically diagnosed infections and risk of childhood leukaemia: a population-based case-control study. Int J Epidemiol. 2012; 41(4): 1050- 9.
50. Rudant J, Lightfoot T, Urayama KY, et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: a Childhood Leukemia International Consortium study. Am J Epidemiol. 2015; 181(8): 549-62.
51. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016; 352(6285): 544-5.
52. Wen Y, Runming J, Hongbo C. Interaction between gut microbiota and acute childhood leukemia. Front Microbiol. 2019;10:1300.
53. Tylavsky FA, Smith K, Surprise H, et al. Nutritional intake of long-term survivors of childhood acute lymphoblastic leukemia: evidence for bone health interventional opportunities. Pediatr Blood Cancer. 2010; 55(7): 1362-9.
54. Badr H, Paxton RJ, Ater JL, et al. Health behaviors and weight status of childhood cancer survivors and their parents: similarities and opportunities for joint interventions. J Am Diet Assoc. 2011; 111(12): 1917- 23.
55. Fuemmeler BF, Pendzich MK, Clark K, et al. Diet, physical activity, and body composition changes during the first year of treatment for childhood acute leukemia and lymphoma. J Pediatr Hematol Oncol. 2013; 35(6): 437-43.
56. Zhang FF, Saltzman E, Kelly MJ, et al. Comparison of childhood cancer survivors’ nutritional intake with US dietary guidelines. Pediatr Blood Cancer. 2015; 62(8): 1461-7.
57. Duncan CN, Brazauskas R, Huang J, et al. Late cardiovascular morbidity and mortality following pediatric allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2018; 53(10): 1278-1287.
58. Chua LL, Rajasuriar R, Azanan MS, et al. Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. Microbiome. 2017; 5(1): 35.
59. Sung L, Lange B, Gerbing R, et al. Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia. Blood. 2007; 110(10): 3532-9.
60. Kachlany SC, Schwartz AB, Balashova NV, et al. Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells. Leuk Res. 2010; 34(6): 777-85.
61. Shan W, Bu S, Zhang C, et al. LukS-PV, a component of Panton-valentine leukocidin, exerts potent activity against acute myeloid leukemia in vitro and in vivo. Int J Biochem Cell Biol. 2015; 61: 20 -8.
62. Dai C, Zhang C, Sun X, et al. LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells. Int J Biochem Cell Biol. 2016; 76: 107 -14.
63. Shan W, Ma X, Deng F. Is LukS-PV a novel experimental therapy for leukemia? Gene. 2017; 600: 44-47.
64. Pflug N, Kluth S, Vehreschild JJ, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016; 5(6): e1150399.
65. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg. 2004; 139(7): 760-5.
66. Pepeljugoski CA, Morgan G, Braunstein M. Analysis of intestinal microbiome in multiple myeloma reveals progressive dysbiosis compared to MGUS and healthy individuals. Blood. 2019; 134 (Supplement 1): 3076.
67. Calcinotto A, Brevi A, Chesi M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun 2018; 9(1): 4832.
68. Fredricks DN. The gut microbiota and graft-versus-host disease. J Clin Invest. 2019; 129(5): 1808 -1817.
69. Farhadfar N, Gharaibeh RZ, Lyon D, et al. Microbiota phylogenic analysis revealed decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal bacterium, in patients with chronic graft-versus-host disease. Hematol Oncol Stem Cell Ther 2021; 14(3):263-265.
70. Jenq R, Taur Y, Devlin SM, et al. Intestinal Blautia is associated with reduced death from Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2015; 21(8): 1373-83.
71. Gerbitz A, Schultz M, Wilke A, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004; 103(11):4365-7.
72. Ladas EJ, Bhatia M, Chen L, et al. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2016; 51(2): 262-6.
73. DeFilipp Z, Peled JU, Li S, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2018; 2(7): 745-753.
74. Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep. 2015; 5: 14554
75. Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?. Gut. 2020; 69(10): 1867- 1876.
76. West NR, Powrie F. Immunotherapy not working? Check your microbiota. Cancer Cell. 2015; 28(6): 687 -689.
77. Shi Y, Zheng W, Yang K, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med. 2020; 217(5): e20192282.
78. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018; 359(6371):97-103.
79. Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021; 371(6529):595-602.
Files | ||
Issue | Vol 16, No 3 (2022) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijhoscr.v16i3.10139 | |
Keywords | ||
Microbiota; Anemia; Thrombosis; Leukemia; Lymphoma; Multiple myeloma |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |